Struggling with stochasticity: metaphors, narratives and evidence
Leon A Barmuta
1. University of Tasmania, Hobart, TAS, Australia

Rather than bore you with my Greatest Decisive Datasets (I don't have any) or my Most Influential Policy Document (an oxymoron), I'm taking the opportunity to revisit the Big Idea that excited me as a PhD student in the early 1980s: stochastic, non-equilibrium ecosystems. Both lotic and lentic systems seem prime examples, but have we developed appropriate ways of thinking about them – both scientifically and culturally? In reviewing our progress, I will argue that we reach for metaphors rather more than we'd like to think we do. While this can generate novelty, it can constrain the narratives we spin and the types of evidence we pursue. I will illustrate by focusing on resilience and regime shifts because they are interesting ideas and have become prominent themes in our narratives about inland waters. Gathering evidence about these can be problematic. So have the metaphors that generated these ideas in the first place outlived their usefulness? I have no pat answers, but I hope to reinvigorate our engagement with big ideas and stochastic systems, and I hope to reinvigorate some of you too.

Adaptive management: good in theory, hard in practice
Sarina Leo
1. Department of Environment and Primary Industries, East Melbourne, VIC, Australia

Adaptive management is a systematic process for improving management by ‘learning by doing’. Actions are adjusted in response to feedback on the progress towards the desired outcomes or management objectives. Adaptive management is practised by implementing and then reviewing policy, or by predicting the outcomes of management activities and then strategically monitoring the actual outcomes to gather information to improve future management. While the theory of adaptive management has become popular in natural resource management, there are scientific limitations, social issues and institutional constraints to its practical application.

The Victorian Waterway Management Program has undergone a process of reviewing and updating its state policy and is in the process of updating regional planning strategies. The new Victorian Waterway Management Strategy (2013) outlines an improved approach to the way the program undertakes adaptive management. The strength of the improved approach is the use of logic models, based on best available knowledge, to define the relationships (known or assumed) between management outputs, management outcomes and long-term resource condition outcomes. The logic models are used to target monitoring efforts and prioritise research into knowledge gaps or relationships with uncertain evidence. Despite the improvements to the adaptive management approach, challenges remain. Monitoring costs are prohibitive and gaining landholder support for long-term monitoring of management outcomes on private land has proven to be difficult. There is little scientific knowledge on how much management activity needs to occur to generate specific environmental outcomes. Additionally, separating the influence on environmental change of extreme events (including droughts, flood and fire) from management actions is complex.

Use of a DIDSON acoustic camera improves fishway assessment results and understanding of fish migratory behaviour
Andrew P Berghuis1, 2, Iain T Roberts1, Kris Pitman3
1. Aquatic Biopassage Services, Bundaberg North, QLD, Australia
2. Asset Optimisation, SeqWater, Brisbane, QLD, Australia
3. Pittman Consulting, Landsborough, QLD, Australia

The assessment of fishways is primarily performed to determine the effectiveness and for identifying factors that limit the passage of fish beyond man-made barriers. Traditional methodologies rely on capturing fish that successfully ascend the fishway compared with the species and size classes of those that are attempting to ascend. This approach relies on the ability to reproducibly sample fish and the assumption that methods such as trapping and marking do not modify their behaviour. Other methodologies utilise transmitter or telemetry tagged fish that are detected within or near the fishway. The requirement to capture and tag a diversity of fish species can negatively impact on a meaningful result for movement through the fishway. Both methodologies however are often unable to resolve many aspects of fish behaviour. Dual-Frequency Identification Sonar (DIDSON) is a relatively new tool for viewing real time behaviour of fish within and around fishways and can reveal many aspects that may affect the overall success of a fishway. This study presents the findings of an assessment program using the combined approach of traditional trapping and a DIDSON acoustic camera to assess efficiency of a new fishway design. Results indicate not only the strategies utilised by fish to successfully move through a fishway but also behavioural responses to external stimuli, diel patterns of movement and use of the fishway structure as habitat. Use of this technology has the potential to optimise fishway operation and achieve more successful fishway designs by revealing fish behavioural responses that would not otherwise be obtained.

Underwater video to study the breeding behaviour of Murray cod (Maccullochella peelii) in the Border Rivers region, New South Wales and Queensland
Gavin L Butler1, Steven G Brooks2, Daniel Smith3, Peter K Kind4, Stuart J Rowland1
1. Fisheries NSW, Grafton, New South Wales, Australia
2. QLD Department of Agriculture, Fisheries and Forestry, Nambour, Queensland, Australia
3. Qld Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland, Australia
4. Murray cod (Maccullochella peelii) is an icon of the Murray-Darling River System (MDRS). There was a significant decline in the abundance of Murray cod throughout the late 1800s and 1900s, and it is now listed as threatened by the Commonwealth. Whilst, Murray cod stocks have improved throughout parts the MDRS, many aspects of its biology remains poorly understood. The aim of this project is to observe and describe the breeding behaviour of Murray cod in the wild using underwater video techniques. Murray cod were monitored over two breeding seasons (2011 and 2012) in Glen Lyon Dam and the Dumaseroa River in the Border Rivers region of NSW and Qld. Aggregation and site selection commenced each year in Glen Lyon Dam in mid-August, with spawning taking place in late August - early September. Nest sites and eggs were also observed in the river over this same period. Murray cod males were observed selecting nesting sites, pairing, spawning and caring for eggs and larval. From beginning to end the process took upwards of 20+ days. Nest sites were located on hard substrate and mainly underground rocks in the dam, whilst in the river they were on cobbles in caves along undercut riverbanks. A second round of spawning in late September – early October was observed in the dam but not in the river. Underwater video has provided a valuable insight into the breeding behaviour of Murray cod. The results have already started to feed back into the wider management of the species.

Seeing with sound – the behaviour and movements of fish in estuaries
Alistair Beckel1, 2, Iain M Sutherlies1, Alan K Whitfield2
1. University of New South Wales, Sydney, NSW, Australia
2. South African Institute for Aquatic Biodiversity, Grahamstown, South Africa

Underwater video techniques have progressed rapidly over the past ten years, and are now used in a diverse range of habitats from small creeks to the ocean depths. A limitation of underwater video cameras is they rely on high levels of water clarity and require artificial lighting if used in low light conditions. In systems such as estuaries, turbidity levels often restrict the use of conventional video. Acoustic cameras (DIDSON) overcome this problem as they rely on sound to produce near video, flowing footage. Our current research is directed in two areas which firstly include the role of light on key ecological functions such predator-prey interactions in estuaries. Artificial light was found to have a strong influence on trophic interactions around anthropogenic structure. A separate study revealed the distribution and behaviour of estuarine predators and prey were related to diel cycles. Larger fish were more active during the day with some moving into shallow habitats at night. This resulted in increased schooling behaviour of batfish. Secondly, we are using the DIDSON to gain information on the connectivity of estuaries and the coast. Placing the DIDSON at the mouth of estuaries we have been able to enumerate the numbers of fish passing through during tidal phases. We have observed over 4000 fish passing during a single tide, highlighting the potential dynamic nature of estuarine fish populations.
Oral abstracts

07 Conceptualizing the feeding and prey handling sequences of a muraened
Cameron S Fletcher1, James A Donaldson1,2, Brendan C Ebner1
1. CSIRO Ecosystem Sciences, Atherton, QUEENSLAND, Australia
2. TropWATER, James Cook University, Atherton, QUEENSLAND, Australia

Video imagery has facilitated detailed examination of high-speed animal behaviors including prey capture and handling. We captured aquaria-based video footage of Gymnothorax polyuranodon (Muraenidae), a species for which feeding behavior would be difficult to obtain under field conditions. This predator exhibits multiple feeding and prey handling modes when feeding on large prey items as has been previously described in Anguilliform fishes. However, video research demonstrated that in this case feeding sequences were frequently far more complex than has been previously realized. We were able to analyze these complex sequences by breaking them down into hierarchical arrangements of simple commonly-observed behaviors, or ‘motifs’. Statistical analysis of the frequency and ordering of different motif sequences allowed us to build an understanding of prey capture and handling strategy.

08 Utility of underwater video for understanding fish swimming and foraging behaviour
Christopher Fulton1, Mae Noble1, Jessica Pink1
1. Research School of Biology, The Australian National University, Canberra, ACT, Australia

Field-based observations of fish behaviour are critical for understanding how they respond to habitat variation in the wild. Our capacity to record in situ behavioural observations of fishes in marine environments has grown over the past six decades with the development of modern SCUBA equipment. Recent advances in underwater video technology and affordability is now set to provide a similar revolution, by providing a novel means for recording and analysing how fish swim and forage within their aquatic environments. We present several case studies in which we aimed to measure the utility of underwater video for recording the behavioural responses of fishes to changes in their marine environment (e.g., wave energy, prey availability). Our findings reveal that video can provide unique insights into the drivers of fish behaviour, but in some cases, direct manual recordings by human observers provided an equally effective and more efficient mode of data collection. Consequently, researchers should carefully consider the pros and cons of each approach relative to their study question when deciding which form of technology to apply in an analysis of fish swimming and foraging behaviour.

09 Feeding behaviour of Murray River crayfish (Euastacus armatus) revealed using underwater video cameras in an upland river
Danswell Starrs1, Brendan C Ebner2, Christopher Fulton1
1. Research School of Biology, Australian National University, Canberra, ACT, Australia
2. Ecosystem Sciences, and TropWATER, CSIRO; James Cook University, Atherton, QLD, Australia

Crustaceans are regularly identified as ecosystem engineers, performing important functions in nutrient pathways and recycling. Within the Murray-Darling Basin (MDB), Murray River crayfish may have been keystone species within nutrient pathways, yet a suite of threatening processes has greatly reduced both the distribution and abundance of this species. We employed unbaited underwater video cameras within a section of the Goodabagbee River (south-eastern NSW) to explore the social and feeding behaviour of Murray River crayfish on patches of detritus in back-edges of the main channel. Underwater video cameras provided fine-scale resolution of feeding behaviour and revealed complex social interactions among Murray River crayfish using this spatially and temporarily restricted food resource. We suggest future lines of enquiry to further understand the role of Murray River crayfish in nutrient cycling in river systems.

Exploring the spatial structure of free-ranging fish groups using digital imaging technique: a practical example with a shoaling drift-feeding fish (Galaxias anomalus)
Aurelien Vivanco1, Gerard Closs2, Cedric Tentelier2
1. Otago University, Anderson Bay, New Zealand
2. Pole d’Hydrobiologie, INRA, LUM 1224, ECOBIO; Saint-Pée-sur-Neill, France

Group-living is widespread in fish, and mono- or multi-specific assemblages can be found in a variety of environmental contexts. In streams, drift-feeding fish often form shoals. They inhabit dynamic and heterogeneous three-dimensional environments, where micro-scale hydraulic features and food patchiness make spatial positioning critical for individual fitness. In this context, the spatial structure is displayed by such ecological significance as it would reflect mechanisms under-lying intra-specific competition and resource distribution. However, shoaling fish display complex dynamics, and the accurate description of such systems is a significant technical challenge in terms of collecting and analysing data. Here, we used a digital imaging technique (VIDSync) to track the spatial collective behaviour and spatial and social organisation of the shoal, in 3-D, at a high spatio-temporal level of resolution. We developed tools to study the statistical property of space-use of each individual, enabling the quantification of key features of the spatial structure of the shoal. We studied links between individual space-use strategy, feeding and social behaviour in order to investigate how the spatial structure of the shoal could be related to its social organisation. This study was carried out on two free-ranging shoals of juvenile drift-feeding fish (Galaxias anomalus), from the same stream but inhabiting slightly different environments. Results show strong differences in the structure and organisation of the two shoals, suggesting that shoals’ structures are plastic and context-dependent. Such analysis could therefore be used to provide new insights on the ecological function of group-living in fish.

Hydrological connectivity and the composition of aquatic and floodplain plant communities in the southern Murray-Darling Basin
Cherie J Campbell1, Daryl L Nielsen2
1. Murray-Darling Freshwater Research Centre and La Trobe University, Mildura, VIC, Australia
2. Murray-Darling Freshwater Research Centre, CSIRO Land & Water and La Trobe University, Wodonga, VIC, Australia

River regulation has altered hydrological connectivity characteristics throughout the Murray-Darling Basin. These alterations are likely to have affected the hydrochemistry (water dispersal) patterns for many plant species. It has been hypothesised that increased connectivity leads to the homogenisation of aquatic and floodplain plant assemblages by facilitating the dispersal of propagules. Equally it has also been suggested that decreased connectivity may homogenise assemblages by reducing the spatial and temporal diversity of habitats. We looked at the effects of decreased and increased connectivity on presence/absence of plant species from wetland and floodplain sites obtained from seven geographic and separated locations in the southern MDB (Barmah Forest, Gunbower Forest, Hattah Lakes, Great Darling Arabanah, Lindsay-Mulca-Wallpolla Island, Chowilla Floodplain and the Lower Lakes). We compared the composition of aquatic and floodplain plant communities both within and between locations during low connectivity (the recent drought, 2000-10) and low and increased hydrological connectivity. Multivariate analysis demonstrated that at all locations community composition differed between periods of low and increased connectivity and that locations were distinct to each other. However, in rejection of our hypothesis, there was no consistent trend in increased or decreased homogeneity of plant assemblages with increased connectivity. Our results indicated that the observed heterogeneity of floodplain and wetland plant communities across both periods of connectivity is influenced by local factors within sites and/or dispersal limitations between sites.

Biodiversity benefits of erosion control plantings in the lakes Alexandrina and Albert, lower River Murray, South Australia
Jason M Nicol1, Susan L Gehrig1, Kate A Frahn1
1. SARO Aquatic Sciences, HOLEY BEACH, SA, Australia

Lakeside erosion is a widespread problem in lakes Alexandrina and Albert. One control option used by land managers is to selectively plant linear stands of Schoenoplectus validus (at depths of 50–80 cm) along shorelines in order to create a “breakwater”. Data from The Living Murray vegetation condition monitoring showed that at shorelines where S. validus was present (naturally occurring and planted) there was often a diverse wetland plant community compared to shorelines without S. validus, which tended to be dominated by Typha domingensis or Phragmites australis or devoid of vegetation. The aim of this study was to compare the plant community at planted shorelines and an adjacent unplanted control shoreline to determine whether planting S. validus has benefits for the aquatic plant community. Vegetation surveys were undertaken in autumn 2013. At three out of four shorelines that were planted between 2006 and 2007 there was a higher abundance and greater species richness of wetland species compared to the control shorelines. At two of the three shorelines planted more recently (2012 and 2013) subemergent species were also present but absent at the control shorelines. Results showed that planting S. validus has benefits other than erosion control. Planting S. validus can facilitate the establishment of wetland plant communities on the shorelines of lakes Alexandrina and Albert in areas that would be otherwise unfeasible. Furthermore, diverse restoration plantings are not required to establish wetland vegetation and revegetation efforts can be directed to planting a single species.
Oral abstracts

The resilience of aquatic plants to wet season flood disturbance and dry season succession in the Daly River, tropical Australia

Julia Schult1, Simon A Townsend1

Wet season floods in the Daly River are an annual disturbance, of varying magnitudes, when river depths can exceed 10 m and current speeds exceed 1 m/s. During the wet season, shear stress and drag forces, as well as substrate loss, remove benthic algae and macrophytes from the riverbed. The standing stock of 6 groups of aquatic plants was determined over a 3.3 km reach, comprising 2 pools and 2 runs, during the dry season in July, September and November when river flow was groundwater fed. These groups were benthic microalgae, benthic filamentous macroalgae (notably Spirogyra), Characeae, Vallisneria nana, Schoenoplectus sp and ptoplotonker, though the latter two groups were almost a minor proportion of the total standing stock. A preliminary survey in June revealed the presence of benthic algae, while macrophytes were not observed though remnants of Vallisneria and Schoenoplectus would have been present. The total standing stock, measured as chlorophyll a, increased over the dry season, approximating doubling every 2 months. Initially, benthic microalgae and filamentous macroalgae were the dominant plant. In the mid-dry season, the dominant plant shifted to Characeae, and then to Vallisneria at the end of the ‘dry’. This succession in aquatic plants and their contribution to the total standing crop is probably underpinned by the rates of algal colonisation, relative plant growth rates and carrying capacity, and the resilience of Vallisneria and Schoenoplectus to wet season flood disturbance.

Contrasting allelopathic effects of exotic and Australian macrophytes on cyanobacteria and green algae

Fariba Moslih Pakdel1, John Beardall1, Tricia Wevill, Jenny Davis

1. Monash University, Hallam, VIC, Australia
2. School of Biological Sciences, Monash University, Melbourne, VIC, Australia

The allelopathic effects of three exotic macrophytes, Elodea canadensis, Cabomba caroliniana and Egeria densa, and three native species, Potamogeton crispus, Potamogeton ochroleuhtus and Ceratophyllum demersum, on two species of cyanobacteria, Anabaena variabilis and Synechococcus sp. and a green algal species, Chlorella sp. were tested under laboratory conditions. Experiments were conducted in light microcosms. Allelopathy was considered to have occurred if the growth of the cyanobacterial or algal species was significantly lower in treatments comprising live macrophyte material in comparison to controls (without live material). Both C. caroliniana and E. canadensis exerted significant negative effects on the growth of the target organisms, with the strongest effect exerted by C. caroliniana. The allelopathic effects of the invasive species were higher than those of native macrophytes (except C. demersum). These findings suggest that allelopathy may have an important role in facilitating the success of exotic macrophytes in temperate Australian wetlands.

Understorey vegetation: evidence that more natural hydrological history results in more resilient plant communities

Deborah Bogrenhuber1, Danielle Linklater1, Cherrie Campbell2

1. Murray Darling Freshwater Research Centre, Mildura, VIC, Australia
2. Department of Sustainability and Environment, Mildura, VIC, Australia

Resilience of arid floodplain ecosystems is measured by the ability of the floodplain to return to a functioning wet phase after a dry phase, and vice versa. We monitored the understorey community of an arid river floodplain complex that was restored to an ephemeral regime in 2005. Three sites were monitored annually from 2010-2013, from each of three hydrological regime categories: 1) ephemeral, 2) permanent-ephemeral (previously permanently inundated, now ephemeral), 3) permanently inundated. Surveys included wet and dry phases. Data was analysed using functional groups to detect broad differences among hydrological regime categories and survey years. Species were allocated to functional groups reflecting water requirements, broadly: terrestrial-dry, don’t require water-logged soil to germinate, don’t tolerate flooding; terrestrial-damp, require water-logged soil to germinate, don’t tolerate flooding; amphitrophic, require water-logged soil to germinate, tolerate or respond to flooding. Functional group diversity and composition shifted significantly between survey years; terrestrial-dry plants characterised dry phases, terrestrial-damp and amphitrophic plants characterised the wet phase. The plant community at ephemeral sites showed the greatest response, with a larger proportion of terrestrial-damp and amphitrophic plants during wet years than permanent-ephemeral or permanent sites; and a larger shift in proportion of functional groups from the wet phase to the dry phase. Our findings provide evidence that understorey plant communities of arid floodplains are more resilient under natural hydrological management (i.e. ephemeral) than when artificially permanently inundated. The levels of resilience identified in the ephemeral sites may be a useful reference for measuring successful rehabilitation of the system.
Resting metabolism and hypoxia tolerance are conserved across genetically distinct sub-populations of an iconic, tropical Australian teleost (Lates calcarifer)

Geoffrey M Collins1, Timothy O Clark2, Jodie L Rummer3, Alexander G Carton1

1. School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
2. Australian Institute of Marine Science, Townsville, Queensland, Australia
3. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia

Extreme temperatures and altered freshwater flow regimes associated with climate change are predicted to cause large-scale fish mortalities in Northern Australia by increasing the frequency and severity of hypoxic episodes. Here, we use the iconic barramundi (Lates calcarifer) species to examine resting oxygen consumption rates across northern Australia from five different sub-populations spanning 12° of latitude. Fish were obtained from commercial hatcheries at Gladstone, Townsville, Brisbane, Karumba and Darwin. Fish were maintained at two temperatures (26°C or 36°C), representing the seasonal thermal range across Australia for this species. Resting VO2 was lower at 26°C (mean = 1.46 ± 0.26 mg O2 kg⁻¹ min⁻¹) than at 36°C (mean = 3.16 ± 0.43 mg O2 kg⁻¹ min⁻¹). All populations exhibited a clear and strong trend in response to decreasing oxygen tension, with a significant decrease in VO2 between 100% and 30% saturation, below which VO2 exhibited a steep decline. Mean critical oxygen tension (VO2crit) across all populations was lower at 26°C (15.44 ± 3.20% saturation) than at 36°C (21.07 ± 3.92% saturation). Overall, we found that both hypoxia tolerance and aerobic resting metabolism are conserved across the distribution of barramundi in Australia.

Rethinking fisheries management as a combined response to changing climate, habitat, fishing effort and fishing pressure

Colin Credoghan

1. FRDC, Deakin West, ACT, Australia

Under classic fisheries management theory fisheries typically move from “nascent” to “developed” and then to a “sustainably developed” phase with maximum sustainable yield as the goal of management. This classic theory looks principally at fishing pressure. In reality recent trend in fisheries management is towards “ecosystem-based” or “sustainability components” to economic yield. In tracking progress towards sustainability the most commonly used metric is a measure of catch per unit effort (CPUE). For barramundi the CPUE shows evidence of “sustainability” fisheries, however, this is not true for other species which are overfished. The CPUE at 36°C shows evidence of “unsustainable” fisheries, and indeed about 75% of Australia’s commercial catch are now unsustainably operated, with an overabundance of the major species. This is a major stressor on fisheries, covering both physical habitat loss and declining water quality can be the major stressor on top of climate impacts, the other major influence that must be taken into account is the impact of climate change on variability and changing climate. This presentation draws heavily on the findings of multiple completed research projects undertaken as part of the FRDC – DCCEE Climate Change Adaptation Initiative and speculates on how we might need to reform our fisheries management systems. The presentation concludes with a suite of criteria for smarter fisheries management that by being centred on stock productivity can incorporate the issues of resource allocation, habitat condition and climate variability / change.

A semi-quantitative vulnerability assessment framework applied to northern Australian fisheries

David Walsh1, Thor Saunders2, Julie Robins3, Alastair Hardy4, Johanna Johnson5, Jeffrey Maynard6, Greta Pecil2, Bill Savoyck2

Andrew Tobin8

1. CZQ Fisheries, Whitsfield, QLD, Australia
2. Department of Primary Industry and Fisheries, Darwin, NT
3. Department of Agriculture, Fisheries and Forestry, Brisbane, QLD
4. Department of Fisheries WA, Perth, WA
5. University of Tasmania, Hobart, TAS
6. Infish, Townsville, QLD
7. James Cook University, Townsville, QLD

Many of the recent efforts in understanding climate change implications in Australia have focused on identifying adaptation options to temper negative consequences. In order to do this effectively and appropriately there must first be an ability to identify likely impacts and the inherent capacity for systems to adapt to changes. To achieve this objectively we used the IPCC vulnerability assessment framework for which we developed semi-quantitative criteria, and then applied this to key fisheries species in northern Australia to prioritise species for future action based on vulnerability and fishery importance. We found that species with the highest ecological vulnerability tended to have an estuarine/nearshore habitat preference; poor mobility; reliance on habitat types predicted to be impacted by climate change; low productivity (i.e., slow growth/late maturing/low fecundity); known to be affected by environmental drivers; and were overfished. Highest priority species include barramundi, golden snapper, sandy flathead, black carp, white mullet and mangrove jack. We will present an overview of the semi-quantitative aspects of the framework and focus the talk on how the framework elements inform the identification of climate change adaptation options and their feasibility, and how stakeholders play an important role in this process.

Snapper spawning timing, migratory dynamics and water temperature: implications of climate change to snapper spawning behavior in south-east Australia

Paul Hampton1, Tony Fowler2, Alistair Hobday3

1. Department of Environment and Primary Industries, Queenscliff, VIC, Australia
2. CSIRO Land and Water, Queenscliff, VIC, Australia
3. Murray-Darling Freshwater Research Centre, Wodonga, VIC, Australia

This presentation provides an overview of the relationships between sea surface temperature (SST), reproductive biology and seasonality of snapper, Pagrus auratus, spawning in south-eastern Australia. Based on this information and forecast modelling of future SST conditions around the south-eastern Australian coast, predictions of changes to spawning timing and locations are made. Along with this broad regional perspective on potential implications of SST warming to snapper spawning timing and distributions, we also discuss the local example of Port Phillip Bay, invoking data on spawning migratory dynamics from acoustic tagging, and key periods or ‘temperature windows’ for successful spawning based on daily ageing of 0-age juveniles.

Using a mechanistic approach to understand fish distributions along an altitudinal gradient: testing for thermal adaptation

Slade Allen-Ankon1, Rick Stoffels2,3, Peter Priddinore4

1. La Trobe University, Wodonga, VIC, Australia
2. CSIRO Land and Water, Wodonga, VIC, Australia
3. Murray-Darling Freshwater Research Centre, Wodonga, VIC, Australia

An understanding of a species’ thermal niche is important for predicting how populations may respond to an altered thermal regime; whether from climate change, riparian zone alterations or thermal pollution. Unfortunately, the thermal ecology of Australian freshwater fishes is poorly understood. The objective of this PhD is to improve our understanding of this issue by researching the thermal ecology of two congeneric species; the river blackfish (Gadopsis marmoratus) and the two-spined blackfish (G. bispinosus). Anecdotal reports based on their distribution suggest that G. bispinosus may be cold-adapted while G. marmoratus may be adapted to warmer water. This PhD will attempt to provide a mechanistic explanation for blackfish distribution by determining the thermal niche of these two species. Sampling of blackfish communities along an altitudinal gradient in two streams revealed that G. bispinosus are the only blackfish species found at relatively low elevations. This suggests that G. bispinosus has a greater tolerance of cooler temperatures compared to G. marmoratus and that G. bispinosus may be a better model species for testing for thermal adaptation. Thermal and respiratory performance of both species was determined at different temperatures using a Ucrt protocol. No significant species-temperature interactions were detected, with maximal performance of both species occurring at 22 degrees. If the two species are adapted to different temperatures, these adaptations do not appear to affect their aerobic swimming capabilities. Additional research on the effect of temperature on other aspects of fitness is needed to determine if thermal adaptation is responsible for the distribution patterns of blackfish species.
Phylogeny, biogeography and evolution of temperate perches (Perchichthyidae)

Peter Unmack1, Justin Bagley2, Aaron Davis3, Michael Hammer4, Mark Adams5, Jerry Johnson6

1. University of Canberra, Canberra, ACT, Australia
2. Biology Department, Brigham Young Unives, Provo, UT, USA
3. TropeWATER, James Cook University, Townsville, QLD, Australia
4. University of Sydney, Sydney, NSW, Australia
5. Australian Museum, Sydney, NSW, Australia
6. James Cook University, Townsville, QLD, Australia

The family Perchichthyidae is of great significance in temperate freshwater environments in terms of their ecological importance and relationship to their environment. The evolution of the group has resulted in a wide variety of ecological and morphological diversification from the small perches (up to 10 cm), epigean blackfishes and larger perches and cods (up to 1.8 m). The clade contains the largest fish species historically present in most habitats and an unusual biogeographic quirk is they have the highest number of sympatric genera and species of any freshwater fish family in Australia. Using a combined taxonomic history, the relationships within and between other families has been clarified. Relationships to other families are not yet fully resolved, but there is a tantalising potential monophyletic relationship with freshwater perches from North America (Centracanthidae) and Asia (Sinipercaidae), along with the marine families Cirrhidae, Cheilodactylidae, Oplegnathidae, Aplodactylidae, Chironemidae and Enoplosidae. Within the family, South American species (Percichthys, Percilia) are nested within the Australian perchichthyids. One major change to the taxonomy of Perchichthyidae is the placement of Bass and Estuarii Perch back into the genus Perciliates and their removal from the family. Percaulaceans appears to be unrelated to any currently recognised family. In this presentation we will explore perchichthyid phylogenetic relationships, provide a time scale of their evolution using a biologically calibrated molecular clock and provide insights into the evolution of body size and other traits within the family.

Insights on species distributions in Sicidynes gobies using genetic tools

Laura Taillebois1, Philippe Keith2

1. RIL & NAMRI, Charles Darwin University, Darwin, NT, Australia
2. Milieu Peuplés Aquatiques, Muséum national d’histoire naturelle, Paris, France

The Sicidynes subfamily (Teleostei: Gobiodei) is a diverse group of fish found in tropical insular river systems in the Indo-Pacific area, the Caribbean region and West Africa. They spawn in freshwater and their larvae drift downstream to the sea where they develop, before returning to rivers to grow and reproduce (amphidromous). The geographic distribution patterns of Sicidynes species are variable and range from endemic to widely spread across several oceans. Knowledge of how and from where species have emerged to occupy their current geographic ranges is essential for understanding evolution of the group and for developing strategies for their conservation. Phylogenetic studies show that evolutionary history has played a major role in shaping Sicidynes distribution patterns, but more recent events and dispersal patterns also appear to have shaped present distribution and connectivity patterns of Sicidynes species in the Indo-Pacific region. We assessed past and present genetic structure of populations of two species that are widely distributed in the Central-West Pacific and which have similar pelagic larval durations. Speciation in Sicidynes was found to have occurred in highly isolated refugia and the present species distribution was established by periods of admixture. A comparison of the mito-nuclear markers suggests the presence of discordance.

Contrasting patterns of gene flow among aquatic insects in Australian desert waters

David Welch1, Thor Emma Razeng2, Amy E Smith3, Jayne Brim Box4, 5

1. School of Biological Sciences, Monash University, Clayton, VIC, Australia
2. Department of Land Resource Management, Northern Territory Government, Alice Springs, NT, Australia
3. Department of Biological Sciences, Florida State University, Tallahassee, Florida, USA
4. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia

In the Australian arid and semi-arid zone, aquatic habitats exist as isolated waterbodies, connected only intermittently by occasional floods. Gene flow among populations of aquatic insects in this boom and bust environment depends, in part, on how well animals can disperse across large and often inhospitable distances. We investigated differences in genetic structuring between seven species of strong or weak-flying aquatic insects using a biologically calibrated molecular clock and provided insights into the evolution of body size and other traits within the family.

Using whole mitogenome sequencing to inform population structure: the Critically Endangered Speartooth Shark Glyphis glyphis as a case study

Pierre Feulatte1, Peter Kyme2, Richard Pillans3,4, Xiaochun Chen5, Peter Grewe6

1. Charles Darwin University, Casuarina, NT, Australia
2. CSIRO, Brisbane, QLD, Australia
3. Guangxi Academy of Sciences, Guangxi, China
4. CSIRO, Hobart, TAS, Australia

In elasmobranchs, evolutionary rates of mitochondrial genes are low and variation between distinct populations can be hard to detect with the commonly used single mitochondrial gene approach. In this study, we explored the potential of whole mitogenome sequencing for phylogeographic studies in elasmobranchs by focusing on Glyphis glyphis, a rare and Critically Endangered euryhaline shark with presumably low population size and low genetic diversity. Highly reliable mitogenomic sequences were obtained from 93 sharks sampled in three different rivers using long range PCR and amplicons sequencing with Illumina MiSeq. The genetic diversity in G. glyphis was extremely low. Only 19 variable sites were found, distributed across 12 haplotypes. However, this small amount of genetic diversity demonstrates the potential of barriers to gene flows between each population. We will discuss how this approach performed compared to single gene approaches, demonstrating the potential of mitogenomics for population structure analysis in species with low genetic diversity. We will also briefly comment on the cost-efficiency of our sequencing approach and how it compares to traditional Sanger sequencing.

Genetic population structure of black marlin (Istiophorus indica) within the central Indo-Pacific

Samuel M Williams1, Mike Bennett2, Julian Pepperell3, Jesse A.T. Morgan4, Jennifer R Ovenden1

1. School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
2. Pepperell Research and Consulting Pty Ltd, Noosaville, Australia
3. Queensland Alliance for Agriculture and Food Innovation, St Lucia, Australia

The black marlin, Istiophorus indica, a pelagic species whose distribution ranges throughout the tropical and subtropical waters of the Indo-Pacific. The IUCN Red List of Threatened Species defines I. indica as data deficient due to a lack of information on the population size and rate of change of the species. For the purpose of resolving the population structure of I. indica 18 polymorphic microsatellite loci were isolated and characterised from Next-Generation sequencing data. The mitochondrial control region and panel of 18 microsatellite loci were used to analyse 205 young-of-the-year black marlin samples collected by non-lethal sampling by catch and release recreational fisheries. The sampling sites comprised five Indo-Pacific regions (East Indian Ocean, West Pacific Ocean, North Tasman Sea, South China Sea and the Gulf of Carpentaria), which were identified as representing ocean basins or regions of inter-oceanic connectivity. Parsimony network analysis of the control region sequences suggested the presence of genetic admixture, distinguishing three distinct clades which were not congruent to geographic locality. Investigation of the microsatellite loci revealed the presence of oceanic structure throughout the range which conforms with the species’ biogeography. The pronounced signatures in the mitochondrial clades may reflect ancient subvation during times of sea level fluctuation, followed by periods of admixture. A comparison of the mito-nuclear markers suggests the presence of discordance.

Developing next generation sequencing as routine monitoring tool in aquatic environments

Melissa Green1, Vincent Pettigrove2, Leon Metzeling1, Ary Hoffmann3

1. The University of Melbourne, Parkville, VIC, Australia
2. EPA Victoria, Melbourne, Victoria, Australia
3. CSIRO, Hobart, TAS, Australia

Invertebrate communities are central to many environmental monitoring programs. In freshwater ecosystems, aquatic macroinvertebrates are collected, identified and then used to infer ecosystem condition. Yet the key step of species identification is often not taken, as it requires a high level of taxonomic expertise, which is lacking in most organizations, or species cannot be identified as they are morphologically cryptic or represent little known groups. Identifying species using DNA sequences can overcome many of these issues, with the power of next generation sequencing (NGS), using DNA sequences for routine monitoring becomes feasible. In this study, we test if NGS can be used to identify species from field-collected samples in an important biondiversity group, the Chironomidae. We show that Cyrtocohenia oxidacea I (COI) and Cyrtocohenia B (CYB) sequences provide accurate DNA barcodes for chironomid species. We then develop a NGS analysis pipeline to identifying species using Megablast searches of high quality sequences generated using 454 pyrosequencing against comprehensive reference libraries of Sanger-sequenced voucher specimens. We find that 454 generated COI sequences successfully identified up to 96% of species in the sample, but increased to 99% when combined with CYB sequences. We also found a strong quantitative relationship between the number of 454 sequences and individuals showing that it may be possible to estimate the abundance of species from 454 pyrosequencing data. The NGS approach developed here can lead to routine species-level diagnostic monitoring of aquatic ecosystems.
Filming and Snorkelling as Mobile Visual Techniques to Survey Tropical Rainforest Stream Fauna

James A Donaldson1, 2, Brendan C Ebner1, 3, Christopher J Fulton4, Stephen Cousins1, Mark J Kennard1, Olaf Meynek2, Jason Schaffer1

1. TopWATER, James Cook University, Townsville, QLD, Australia
2. Ecosystem Sciences, CSIRO, Heronry, QLD, Australia
3. Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
4. Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia

Dense tropical rainforest, waterfalls and shallow riffle-run-pool sequences pose challenges for researcher access to remote reaches of streams for aqua fauna surveys, particularly when using capture-based collecting techniques (e.g. backpack and boat electrofishing, trapping). We compared the detection of aquatic species within pool habitats of a rainforest stream obtained by two mobile visual techniques during both the wet and dry season: active visual survey by snorkelling and baited remote underwater video stations (BRUVS). Snorkelling detected more species than a single BRUV at each site, both within and between seasons. Snorkelling was most effective for recording the presence and abundance (Max N) of diurnally active small bodied spe- cies (4-15 mm total length), although both techniques were comparable in detecting large bodied taxa (turtles, fish & eels). On the current evidence, snorkelling provides the most sensitive and rapid visual technique for detecting rainforest stream fauna. However, in stream sections dangerous to human observers (e.g. inhabited by crocodiles, entanglement, extreme flows), we suggest the stratified deployment of multiple BRUVS across a range of stream microhabitats within each site.

How long is enough: Comparison of baited remote underwater video (BRUV) set times to representatively sample rocky reef fish assemblages

Dion Harasti1, Hamish Malcolm1, Nathan Knott1, Christopher Gallen3, Melinda Coleman1

1. NSW DPI, Taree, NSW, Australia
2. Baited Remote Underwater Video (BRUV) has become a popular technique to survey fish assemblages for a wide range of purposes from ecological monitoring to testing specific ecological hypotheses. BRUV methodology can, however, vary greatly due to differences in the habitats being sampled, the questions being addressed, the equipment being used, and due to historical reasons. In this study, we test whether there are significant differences between estimates of rocky reef fish assemblages, species diversity and relative abundance between different BRUV set times. We sampled fish assemblages on a rocky reef (20 – 33 m) across two marine parks (Inshore Islands Marine Park, SIMP; Port Stephens Great Lakes Marine Park – PSGLMP; New South Wales). Three locations were surveyed, one in SIMP and two in PSGLMP. At each location replicate BRUVs were deployed for 30 and 60 mins in ‘a take’ area and a fished area. Multivariate analyses showed there were no differences in fish assemblages or species richness between 30 and 60 min set times. Snapper Pagrus auratus, showed a significant increase in relative abundance (Max N) between 30 and 60 mins. Piecewise regression analysis of breakpoint times for species accumulation found that there were no significant difference between locations or fished and un-fished areas and that mean breakpoint, the time when species accumulation changes, occurred at 12 mins ± 1.045 S.E for all sites combined. This study quantifies either 30 or 60 minutes provides a reasonable estimate of rocky reef fish diversity and relative abundance.

Contrasting baited video with “traditional" survey methods for assessing freshwater fish assemblages

Dion Iervasi1, Jacquoim Monk1, Vincent Versace2

1. Australian Research and Consulting, Kirkstall, VIC, Australia
2. School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia

Collecting accurate species occurrence datasets are fundamental to managing freshwater fish. Traditionally, freshwater fish surveys use electrofishing and a range of trap techniques. However, these methods have well known biases and often result in an incomplete picture of the fishes present. For example, electrofishing is well documented to be biased toward larger bodied fishes, while bait traps can capture only small bodied species. Accordingly, these techniques are often used in parallel to obtain as complete a picture as possible of the fish assemblage present. In the past decade, baited remote underwater video have gained popularity in the marine environment as an alternative to traditional fish survey methods. These baited camera techniques, however, remain largely untested in freshwater systems. This presentation will contrast species assemblage and size information obtained using baited video with that of traditional survey methods in a clear-water, macrophyte dominated freshwater lake in South West Victoria.

Freshwater fish films and field guide for the Indian Ocean Drainage Division (Pilbara Province)

David Morgan1, Ashley Ramsay2, Mark Allen3, Stephen Beatty1, James Keleher

1. Murdoch University, Murdoch, WA, Australia
2. ENVfusion Films, Bunbury, WA, Australia

The usually unheralded splendour of freshwater fish communities can be difficult to communicate to the broader community. Underwater video footage can overcome this hurdle by shining a light on what lies beneath. We have recently completed a short documentary and field guide depicting the fishes of the Indian Ocean Drainage Division (Pilbara Province). The Pilbara Province extends from the De Grey River in the north, to the Irwin River in the south, and encompasses some of Western Australia’s largest rivers and spectacular gorges. The field guide and documentary depicts each of the native fishes that are found in freshwaters and includes some of the continents most threatened species, the region’s diadromous species and cave fishes, as well as highlighting the onclosing threat of faunal invaders from the south. The Pilbara is divided into three sub-provinces, based on their aquatic fauna, and includes the Southern Pilbara Sub-province, the North West Cape Sub-province and the Northern Pilbara Sub-province, each of which contains endemic fishes and each with its own threats. These educational materials are useful tools for the wider community, including schools, and were funded through the Rangelands Natural Resource Management Program and the Western Australian Governments State Natural Resource Program. It is the second field guide and documentary for the freshwater fishes of WA, the first being a highly successful production focusing on the south-west ichthyological province which can be viewed at www.freshwaterfishgroup.com. The south-west package has now been converted into 10 separate Teacher’s Guides (years 1-10) that directly link to the National Curriculum.

Developing novel protocols for assessing environmental impacts using Baited Remote Underwater Video Stations (BRUVS) in marine environments in South Australia

Sasha Whitmarsh1, Peter Fairweather1, Charlie Huveneers2

1. School of Biological Sciences, Flinders University, Bedford Park, SA, Australia

With the recent implementation of a new marine park network, it is an ideal time for data collection, method development, and monitoring of coastal marine environments. The Pilbara is a large area (1.4 million km2) that includes many areas in South Australia currently remain under-studied, even within Gulf St Vincent, next to South Australia’s most populated city, Adelaide. These areas present a chance to better understand temperate fish assemblages and the factors which may influence them. For my PhD, I am planning to assess fish assemblages using BRUVS in collaboration with the State government and private industries. I have begun an initial pilot study, which is investigating seasonal and diurnal changes in fish assemblages as well as those related to habitat and protection status. Results from a summer sampling trip have been analysed across the two locations, and we plan to repeat this sampling during winter and at night, additionally incorporating an investigation into differences between light colours. Overall, I intend to focus on how different anthropogenic impacts affect fish assemblages. Because BRUVS images are archived, there are potentially several different ways that data could be derived from them. I will discuss the novel methods we hope to use to tease apart potential cumulative impacts and assess key areas for monitoring.

Video assessment techniques for riparian habitat monitoring: testing the waters in the Wet Tropics

Cassandra James1, Jock Mackenzie1, Damien Burrow1

1. TopWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville

Riparian habitat is a key component of river health monitoring and assessment. Several rapid assessment methods exist, largely based around selections of representative sites within a catchment and often stratified. The vegetation is then assessed at each site using trees or similar for a number of habitat attributes (cover, weeds, regeneration, bank structure etc). However, such approaches remain spatially limited and restricted by site inaccessibility. Furthermore, the results are difficult to extrapolate out to the broader spatial scales over which many issues of concern operate. Video assessment techniques have been employed for a number of years. MangroveWatch Shoreline Video Assessment Method is a world recognised rapid assessment method that uses volunteers and relies on assessments of shoreline habitat condition from continuous video recordings, thus covering extensive shoreline distances. The video is analysed for a number of features that relate to shoreline condition. We have adapted this methodology to assess riparian condition along the Russell River and Babinda Creek in the Wet Tropics of northern Queensland with a view to developing a RiverWatch programme for community volunteers to easily collect information in a standardized format. We assessed a number of indicators of riparian and in channel structure and health using two different platforms (boat and helicopter). This programme can be implemented cheaper and more widely than other rapid assessment methods, also providing a permanent video archive of condition across enormous river lengths and an important baseline against which future changes could be assessed.
Oral abstracts

37

Direct age determination in crustaceans is now possible: A novel technique

Raouf Kalida1 2

1. Marine Science Centre, Suez Canal University, Ismailia, Egypt
2. Biology Department, University of New Brunswick (Saint John), Fredericton, Canada

The development and measurement of annual growth bands preserved in calcified structures underlies the assessment and management of exploited fish and invertebrates populations around the world. However, the estimation of growth, mortality and other age-structured processes in crustaceans has been severely limited by the apparent absence of permanent growth structures. Here, I review the application of the novel technique for the direct age determination in crustaceans. Besides the pilot study involving northern shrimp and snow crab, the method was applied successfully on other species such as the king crab in Alaska, squid lobster and nylon shrimp in Chile, Crawfish in Louisiana. The method has proved applicable in all species that were investigated in the method, the detection of annual growth bands in the calcified region of two body structures in crustaceans was confirmed thus providing a direct method of age determination. Comparison of growth band counts with reliable, independent measures of age indicates that the bands form annually and provide an accurate indicator of age in all of the species examined. Chemical labeling of growth bands through successive molts, as was one of the two body structures containing the growth bands. Growth band formation was not associated with molting or previously-documented lamellae in the endocuticle. Sex-specific growth curves were readily developed from growth band examination in multiple species, suggesting that routine measurement of growth and mortality in decapod crustaceans should now be possible.

38

Absolute age determination methods for subtropical decapods: growth mark interpretation & validation

Jesse C. Leland1 2, Nicholas J. Sarapuk3 4, Daniel J. Buccher1, Paul A. Butcher5, Renaud Joannes-Boyau1, Jason Coughran1

1. Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
2. National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW 2450, Australia
3. NSW Fisheries, New South Wales Department of Primary Industries, National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW 2450, Australia
4. Southern Cross University, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
5. Jagobor Environmental, PO Box 634, Duncraig, WA 6023, Australia

Recent studies have reported growth marks in the gastric ossicles and eyestalks of decapod crustaceans (Leland et al., 2011; Kilada et al., 2012). The relative utility of ageing structures and validation methods (i.e. calcine staining and LA-ICPMS) for southern Australian mud and freshwater species was assessed using giant mud crab (Scylla serrata) and redclaw crayfish (Cherax quadricarinatus) models. Internal and external hard parts from C. quadricarinatus contained both primary and secondary growth marks that could be counted for age estimation. Scylla serrata counts were based on the detection of two cryptic growth marks in zygocardiac ossicles. The chemical labeling of growth bands through successive molts, as was one of the body structures containing the growth bands. Growth band formation was not associated with molting or previously-documented lamellae in the endocuticle. Sex-specific growth curves were readily developed from growth band examination in multiple species, suggesting that routine measurement of growth and mortality in decapod crustaceans should now be possible.

39

Defining an issue in space and time: A case study from the Northern Territory Mud Crab Fishery

Mark A. Gobert

1. NT DFW, Darwin, NT, Australia

The harvest by the commercial Northern Territory (NT) Mud Crab Fishery (MCF) has shown dramatic fluctuations over the last 15 years. However, the vast majority this variation is driven by the concentrated harvest of crabs along just one third of the NT mainland coastline, i.e., within the NT component of the Gulf of Carpentaria (NT GC). All areas of the NT MCF experienced a poor harvest (and by inference recruitment) in 2002 and 2003. These events were preceded by two years of what is now considered exceptional recruitment and harvest. These large scale variations are indicative of a broad scale environmental driver such as rainfall. The management response to the poor harvests post-2001 was a 10 mm increase in the commercial minimum legal size of both sexes in 2003, which applied along the entire coastline. By the time this measure was introduced, the harvest outside of the NT GC had begun to stabilise, whereas that inside the NT GC continued to decline. The stability in harvest outside the NT GC is now evident through a decade average and standard deviation (to December 2013) in harvest of 1213±131 t, respectively. This contrasts markedly with the corresponding figures from inside the NT GC; i.e., 246 t and 86 t, respectively. This presentation will discuss possible reasons as to why these features of the harvest vary along different sections of the NT coastline and the differing impacts of the 2006 management change in these regions.

40

Trials of a light emitting BRD in the Moreton Bay prawn trawl fishery

Darci E Hunt, Nick Rawlinson

The reduction of fish bycatch in prawn trawl fisheries has been a major point of interest over the last two decades with research being invested into the ways of optimising the gear. This paper presents the results of the first commercial trial in Queensland’s Moreton Bay Prawn Trawl fishery of the light bycatch reduction device (BRD). This device, when attached to the headline of the prawn trawl, illuminates the area in front of the trawl. The lights were tested with paired trawling and a total of 12 tows across three nights were conducted. It was hypothesised that the increased visual warning would result in a reduction of fish species that are caught in the net with no effect on target prawn catch. These preliminary results show that there is a decrease in fish bycatch and crabs with the use of the lights. The catch rate of prawn as well as cephalopods and other crustaceans such as mantis shrimp were increased. The benefits of decreasing fish bycatch include reduced sorting time and increased survival of fish species that are subsequently discarded. Reducing the capture of crabs will also result in higher quality of catch due to less damage to the prawns.

41

From experimental trailing to MSC certification – forty years of transformation in an Australian prawn fishery

Craig Noel1, Simon Clark2, Stephen Mayfield3, Cameron Dixon4, Graham Hooper5, Sean Sloan, Annabel Jones1, Brad Milic1

1. SARDI Aquatic Sciences, Henley Beach, SA, Australia
2. Spencer Gulf & West Coast Prawn Fishermen’s Association, Port Lincoln, SA
3. World Wildlife Federation - Australia, Brisbane, QLD
4. PIRSA Fisheries and Aquaculture, Adelaide, SA

South Australia’s Spencer Gulf Prawn Fishery (SGPF) has been recognized as one of the best managed fisheries in the world, and was the first prawn fishery in the South Pacific to be accredited by the Marine Stewardship Council. Production has been sustained throughout its history, where annual landings have generally ranged from 1,600-2,400 t, with no discernible trend. From the fishery’s inception in 1968, trailing effort increased steeply to a historic peak of ~48,800 h in 1979/80 and then steadily declined to 18,000 h in 2011/12, where it has stabilized over the last decade. The area of Spencer Gulf trawled has also reduced, with the northern, more ecologically-sensitive areas, now largely avoided. Local, small closure areas protect key habitats and nursery areas for important commercial species. Maintaining stable annual catches with less fishing effort is the result of technological advances, an effective harvest strategy designed by three fishery-independent surveys each year, real-time and spatial management, a high level of resource stewardship, and co-management that reflects a strong collaboration among industry, fisheries managers, scientists and eGOs. Faced with relatively new challenges over the past few years (e.g. high fuel prices, increasing competition from imported prawns, minimizing the impact of trailing on other species), the SGPF has adapted further by engaging in a number of research projects that collectively aim to optimize biological and economic sustainability (e.g. bio-economic model, harvest optimization model), while also being proactive in minimizing its impact on the benthic ecosystem (e.g. development of ecosystem-based fisheries management (EBFM) performance indicators).

The Ecological Responses to Altered Flow Regimes Cluster

Neil Sims

1. CSIRO, Clayton, VIC, Australia

CSIRO Flagship Clusters are large scale research programs with an emphasis on people and partnerships working on a collection of strongly integrated projects relevant to a flagship’s goals. The Ecological Responses to Altered Flow Regimes Cluster was funded to address ecological knowledge gaps associated with the impacts of flow alteration due to drought and water resource development, and to help predict the responses of organisms to environmental flows. This presentation will describe the establishment of the Cluster and its objectives, which will provide a context for the remainder of the presentations in this Special Session.

ASFB & ASL Congress 30 June – 3 July 2014 www.asfbas.org.au
Oral abstracts

Developing spatial predictions of hydrology and fish distributions: the good, the bad and the ugly

Nick Bond1, Mark Kennard1, Doug Ward2

1. Griffith University, Nathan, QLD
2. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

Hydrology is a major driver of species distribution patterns in freshwater ecosystems, but information on hydrology is generally only available for a small fraction of sites from which biological data have been collected. To try and fill this data gap, we coupled data from hydrologic gauging sites across the Murray-Darling Basin with information on climate, physiography and water infrastructure, and used these to generate predictive models of long-term runoff variability. We then used these models to extrapolate descriptors of hydrologic variability to ungauged sites, for use in subsequent modelling of fish distribution patterns. Here we discuss the modelling results and their potential applications with reference to the good, bad and ugly sides of their use in inference and prediction. In particular we consider the problems for range-retracted and rare species, extrapolation in geographic and environmental space, and temporal dynamics.

Optimisation for environmental flows: river model outputs to support decision-making in wetlands

Alice E Brown1, Danial Stratford1, Carmel A Pollino1

1. CSIRO Land and Water, Canberra, ACT, Australia

Understanding how different ecological assets respond to flow regimes is essential to the management and delivery of environmental water. Many of our river systems have significant amounts of regulation. This places constraints on the volume of water available for the environment and its delivery. To understand how to make best use of environmental water, methods are required that allow us to: (a) better understand how different ecological assets will respond to different flow regimes and (b) plan for the delivery of water to multiple ecological assets. River system models are complex models used to assess the likely change in water availability over space and time, and support water planning processes. To determine the flow regime that will best meet the needs of single and connected ecological assets, within the delivery constraints, optimisation methods can be used to determine the delivery of environmental water over space and time. This paper details the methods used to support an optimisation tool, where a river system model has been simplified. The model is used to explore optimising flow delivery for managing environmental water releases, considering the inundation of unregulated and regulated wetlands along the length of the Murrumbidgee River, with seasonal, peak flow and duration requirements. This simplification of the hydrology has then been used in a conservation planning framework to demonstrate how different temporal allocations of environmental water can be used to achieve an agreed set of objectives for the catchment’s wetlands.

Optimisation models for Water Resource Planning

Carmel Pollino1, Simon Linke2

1. CSIRO Land and Water, Canberra, ACT
2. Griffith University, Brisbane, QLD

Optimisation methods are routinely used in exploring decision options in conservation planning for nature reserve design, hydrology applications for storage operations, emission scenarios for climate change, and cropping decisions in agriculture. Optimisation methods are embedded in decision theory approaches to explore management alternatives for optimal solutions, which are constrained to available information. Optimisation tools differ from more scenario-based modelling methods where the focus is on predicting outcomes. Solutions seek to avoid worst-case outcomes by seeking robust alternatives that are less sensitive to uncertainties. Recent advances have been made in using optimisation methods to explore management of environmental flows in regulated river systems. In this presentation we will overview optimisation in environmental flow contents and introduce the ecological components of the optimisation model, using the Murrumbidgee River system as a case study. Existing ecological data and response relationships were complemented with new knowledge from the CSIRO Cluster-funded project to explore scenarios of flow and optimal flow release decisions to achieve ecological outcomes. A challenge in this project was in accessing ecological data at the scale and in the context for establishing objectives and in deriving response relationships. Whilst some data is available to establish overbank flow objectives, little was available for in-channel objectives. We will discuss the types of ecological data sets that are applicable to optimisation applications and the challenges of scales.

Oral abstracts

Identifying flow response indicators

Erin Peterson1, Stephen Balcombe2, Fran Sheldon3, Nick Bond1, Bill Venables1

1. CSIRO, Dutton Park, QLD, Australia
2. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

Two of the biggest challenges in terms of environmental-flow management are deciding what ecological characteristic to measure and then detecting whether the flow restoration had the desired impact. We used a ‘gradient analysis’ to identify a subset of environmental indicators that respond predictably to environmental flow disturbance gradients in the Murray-Darling Basin. Four types of potential indicators were calculated using the Sustainable Rivers Audit data and used to assess medium-term responses to managed-flow regimes: fish abundance, biomass, recruit count, and Fulton’s body condition. Potential indicators were calculated for four species, including two native species and two exotic species. These potential indicators were assessed using 33 flow-disturbance metrics representing the raw, percent, and absolute change in modelled flow variability, magnitude, frequency, duration, timing, and inundation frequencies between pre- and post-development time periods. Other environmental variables such as mean annual temperature or elevation were used to account for natural variability in fish distribution, while distance-weighted land-use measures were tried to account for land-use type and proximity to streams and perennial waterbodies. We were able to successfully identify and quantify a number of relationships between potential indicators and flow-disturbance gradients. We found that: 1) traditional indicators of ambient condition may not be suitable as indicators of flow alteration, 2) indicators will likely be species specific and native species may be more suitable than exotic species, and 3) it may be important to use region-specific indicators if climatic conditions vary substantially or species have evolved region-specific life-history characteristics.

The influence of single flow pulses on river ecosystems

Ben Gawne1, Richard Kingsford2, Robyn Watts3, Ross Thompson3, Alison King1, Skye Wassens3, Jess Wilson3, Amina Price1, Leah Beesley, Mike Grace, R. Keller Kopf3, Heather McGinness1, Neil Sims3, John Koehn3

1. CSIRO, Wagonga, Vic, Australia
2. University of NSW, Sydney, NSW
3. Charles Sturt University, Albury, NSW
4. University of Canberra, Canberra, ACT
5. Charles Darwin University, Darwin, NT
6. CSIRO, Canberra, ACT
7. CSIRO, Clayton, Vic
8. Arthur Rylah Institute, Heidelberg, Vic

Environmental Flows are now a prominent restoration tool for Australian Rivers. Flow pulses represent one type of environmental flow release often used by managers as they have been affected by water resource development, are associated with environmental benefits and they are feasible, given existing constraints. Flow pulses can be characterised as an increase in flow from base flow to a peak anywhere up to bankfull which can mean inundation of riparian areas and adjacent wetlands. In using flow pulses as part of a restoration program is that they are a short term and, in some cases, localised action that seeks to contribute to achievement of long-term, large scale changes in condition. This presentation will summarise what is known of the influence of single flow pulses on river floodplain systems within the context of their longer term influences as a step in identifying their potential value as a restoration tool. Broadly, flow pulses can influence ecosystem condition in the medium to long term through their effects on habitat availability and subsequent species’ survival and recruitment. Flow pulses also change patterns of connectivity either delivering subsidies that promote productivity or creating opportunities for dispersal that may influence resilience. Finally, flow pulses may influence processes such as primary production and decomposition that influence food availability. The evidence for the short-term effects of flow pulses is accumulating, however, evidence for their long-term significance is scant and this will need to be addressed if flow pulses are to contribute to restoration.

Scientific collaboration in freshwater science

Stuart Bunn1

1. Griffith University, NATHAN, QLD, Australia

The Cluster demonstrates a new model for collaborative research in freshwater ecology in Australia. The Ecological Responses to Altered Flow Regimes research Cluster has brought together researchers of freshwater ecosystems from seven of Australia’s leading research institutions to address a key knowledge gap in freshwater ecology: how do organisms respond to changes in the river flow regime? The many advantages of collaborative research include promoting scientific synergies and establishing the critical mass required to address large-scale issues. There are also a range of challenges, some of which are generic to large collaborative projects and others which may be specific to collaborative research in freshwater ecology in Australia. This presentation will draw on experiences from the Cluster and describe aspects of collaborative freshwater science that are successful and those where outcomes can be improved.
Oral abstracts

Ecological cognition in intertidal gobies

Culum Brown1, Gemma White1
1. Macquarie University, NSW, Australia

Gobies are highly species and found in a diversity of habitats making them ideal for comparative studies. Here we examined the behaviour of species of intertidal gobies found in Sydney Harbour. Initial studies focused on the tendency of species of rock-pool and rock species on the intertidal zone and how individuals showed high site fidelity and could home when displaced by more than 30m. We then compared the spatial learning ability of rock-pool species with sand-dwelling species with the expectation that natural selection should favour strong spatial learning skills in the former but not the latter. Sand-dwelling gobies tend to move with the tides and live in a very dynamic, featureless environment. A battery of spatial learning tests supported our predictions and we found that rock-pool species tended to rely strongly on landmarks to navigate whereas sand-dwelling species tended to use egocentric navigation techniques. Examination of their brains expressed a tradeoff in investment in neural tissue. Rockpool species have large telencephalons while sand-dwellers had large optic tecta. Our results clearly show that both the brain and behaviour of intertidal fishes are shaped by the habitats they occupy.

Community structure in littoral, intertidal and subtidal habitats of a tropical bay

Merritt E. Atkins1, Colin A. Simpfendorfer1, Andrew J. Tobin1
1. Centre for Sustainable Tropical Fisheries and Aquaculture & School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, Australia

Shallow coastal habitats are valuable for sustaining many fishes yet are increasingly pressured by many anthropogenic impacts including fishing, coastal development and pollution. Although historical research in shallow coastal waters suggested these habitats are most important for supporting and nurturing juvenile fishes, some contemporary research has indicated that many larger and mature fish also use these habitats. Further studies consider the contiguous nature of shallow coastal habitats and how these habitats may be preferentially used or avoided by fishes. To investigate the communities of large bodied fishes (> 200 mm) in the shallow coastal habitats of Cleveland Bay, a mosaic of littoral, intertidal and subtidal habitats were sampled across a 1 year period. Seasonal sampling with a large mesh gill net yielded 1187 individuals from 28 families and 40 species. Four families accounted for 74.6% of the total sample: namely Latidae, Polynemidae, Ariidae and Carcharhinidae. The littoral and subtidal communities were distinctly different from each other with the intertidal community sharing some characteristics with both the littoral and subtidal communities. Telescopus were the dominant group in the littoral and intertidal habitats whereas sharks dominated the subtidal habitat. Season did not influence the structure of the fish communities though some environmental factors (temperature, dissolved oxygen and salinity) did affect some species. It is clear that most species have specific habitat requirements or limits while only some are evenly distributed among the different coastal habitats. Why these patterns and preferences occur will be the focus of future research.

Choosing the right home: habitat detection and settlement decisions by a temperate reef fish on artificial reefs

Emily Fobert1, Stephen Swearer1
1. Department of Zoology, University of Melbourne, Melbourne, VIC, Australia

For marine fish species that are demersal as adults, dispersal during the larval phase sets the spatial scale of population connectivity. Following this dispersal period, larvae must choose where to settle, and it has been argued this settlement decision is the most important process for benthic and demersal fish populations. Using the southern hulafish Trachinops caudalmauls as a model, this study examined how larval traits play a role in habitat detection and selection at settlement. This study aims to determine: 1) If hulafish use habitat associated olfactory cues to detect settlement habitat; 2) If hulafish exhibit gregarious settlement in the absence of variation in habitat complexity; and 3) If distribution and abundance of hulafish at settlement is influenced by canopy cover in the absence of adult conspecifics. Response to habitat associated olfactory cues was tested using a two chamber choice task, in which recently settled hulafish were exposed to paired-wise combinations of four odour treatments: 1) ambient seawater, 2) reef odour, 3) conspecific odour, and 4) reef and conspecific odour. The second and third arms were addressed by monitoring settlement patterns in two in situ experiments on artificial reefs. The first in which the density of adult conspecifics was manipulated, and the second in which the percent macroalgae cover was manipulated. Preliminary results from these experiments suggest presence of adult conspecifics is the strongest indicator of quality habitat for settling hulafish, with conspecific odour eliciting a strong behavioural response, and higher numbers of hulafish settling to reefs with higher conspecific densities.

Oral abstracts

Diverse habitat mosaics underpin rocky reef fish biodiversity within a marine protected area

Christopher Fulton1, Mae Noble1, Ben Bradford2, Christopher Gallen3, David Harasti1
1. Research School of Biology, The Australian National University, Canberra, ACT, Australia
2. Australian Institute of Marine Science, Cowley, WA, Australia
3. Marine Ecosystems Research, NSW Department of Primary Industries, Nelson Bay, NSW, Australia

Environmental surrogates (e.g., habitat type, temperature, depth/altitude) are often used in the design of spatial management plans for terrestrial and aquatic ecosystems. Critical to the success of this approach is selecting surrogates that support both biodiversity and key ecosystem functions. While habitat availability can determine patterns of distribution, abundance and recruitment potential, this can vary according to the particular habitat specialisations of each species. We aimed to assess how a mosaic of habitat types within offshore reefs of the Port Stephens–Great Lakes Marine Park supports a rocky reef fish community with a diversity of habitat preferences. Most of the species we examined (30 species from the Labridae, Pempheridae, Serranidae & Odocidae) displayed strong preferences for either abiotic (e.g., sand, rocks) or biotic (e.g., kelp, live coral) habitat types. Consequently, the availability of preferred habitats was strongly correlated with abundance of adults and/or juvenile fishes across local (within reef patches < 1 km), regional (< 1 km to < 5 km) and landscape scales (>5 km). Changes in composition and structure of rocky reef fish assemblages were explained in conjunction with habitat maps of similar spatial resolution, these scalable fish-habitat associations can provide an effective surrogate for developing spatial plans (e.g., identifying boundaries of Marine Protected Area zones) that protect both adult populations and juvenile nursery habitats that are critical to the sustainability of these reef fish communities.

The effect of an artificial reef on fish abundance, tested using regression of point detections

James Smith1, Will Cornwall1, Michael Lowry2, Iain Suthers3
1. University of NSW, UNSW, NSW, Australia
2. NSW DPI, Port Stephens, NSW, Australia

The effect of a large artificial reef on fish abundance was tested using drop cameras. This novel method involves deploying drop cameras at fixed sites, many times, at a range of distances from the reef, and the observed fish abundance is analysed using regression. Distance from the artificial reef was a significant predictor of fish abundance and species diversity. Fish abundance declined exponentially with distance, halving approximately every 20 m from the reef. Eight species could be tested individually; four of these associated positively with the artificial reef; two were predicted better by microhabitat, and two benthic species showed no association with the reef. Two pelagic species, kingfish and yellow-tail scad, were among the species associated with the reef, which shows that offshore artificial reefs can be successful as recreational fishing targets.

This approach to quantifying spatial relationships shows promise as a tool for aquatic environments. Drop cameras can be time-expensive and provide sparse coverage compared to traditional sonar methods, but can identify species accurately, yield detailed bottom-type information, and observe reef and benthic species (which are difficult or impossible to resolve with sonar). Using regression to examine spatially-explicit associations is especially powerful for species with highly restricted habitat preferences. Its use shows it can be a powerful tool for understanding aquatic environments as well.

Fish assemblages of the Kimberley coast: challenges of turbid and macrotidal environments

Michael J. Travase1, Stephen J. Newman1, Ian C. Potter2
1. Western Australian Fisheries and Marine Research Laboratories, Department of Fisheries, Government of Western Australia, Perth, Western Australia, Australia
2. Centre for Fish, Fisheries and Aquatic Ecosystems Research, Murdoch University, Murdoch, Western Australia, Australia

The tropical coast of north-western Australia is an extensive yet largely understudied region that contains one of the last true wilderness areas in Australia with the Kimberley being assessed as one of the least impacted coastal areas in the world. This coast is characterised by extreme environmental conditions, from regular cyclonic storms, tidal ranges that exceed 10 m, strong tidal currents, highly turbid waters and contrasting extreme wet and dry seasons. Despite these conditions the Kimberley contains a diverse fish fauna and very well developed coral reef, mangrove, seagrass and filter feeding communities. Such extreme conditions present strong selection pressures on marine species to converge in their physiology, morphology and behavior towards an optimal trade-off for living in such conditions. Many Kimberley fish species have evolved specialized physiological traits to survive in these low visibility and high flow environments such as acoustic and bioluminescent signaling to attract mates and to maintain species fidelity in an extreme environment. The logistical challenges of sampling the myriad of fish species in the extreme conditions of north-western Australia have resulted in a range of observation methods being employed in specialized ways in daily, lunar and seasonal cycles. From these observations we are now beginning to map the spatial and temporal diversity in this globally unique environment.
The oceanographic habitats of two migratory pelagic fish: dolphinfish (mahi mahi) and yellowtail kingfish

Steph Brodie1, Iain M Suthers1, Jason D Everett1, Danielle L Ghosn2, Matt D Taylor3, Charles A Gray, Alistair J Hobday4

1. School of BEES, University of New South Wales, Sydney, NSW, Australia
2. Centre for Fisheries and Aquatic Sciences, Department of Primary Industries, Menangle, NSW, Australia
3. Port Stephens Fisheries Program, and University of Newcastle, New South Wales Department of Primary Industries, Nelson Bay, NSW, Australia
4. School of Environment and Science, James Cook University, Townsville, Queensland, Australia

The oceanic distributions of migratory pelagic fish have traditionally been studied using oceanographically based models, and recent years have seen increased efforts to include the influence of fishing pressure. This has led to a shift towards the use of fishery-dependent data, while the use of fishery-independent data has been limited. The model outputs show complex relationships between predictor variables and fish presence, depending upon the season and bathymetry. Probability distribution maps, with associated confidence intervals, reveal the seasonal habitats of dolphinfish and yellowtail kingfish as well as indicate habitat overlap between the species. Determining the distributions for highly migratory species is complex. The use of fishery-dependent datasets with and without estimates of fishing effort will be discussed. These habitat models can be used in conjunction with forecasting products to create seasonal (9 month forecast) and long-term (2062-2073 forecast) forecasts of fish distributions.

Remobilizing Netukulimk: Indigenous cultural and spiritual connections with resource practices which provides for cultural activities in freshwater fisheries. With the assistance of respective agencies, the tribe generation, irrigation and now supplies water to many communities and two cities, including Auckland, our largest city. Were subsequently drained and converted for horticultural and agricultural purposes, whilst the River was dammed for energy

Integrated Management of Freshwater Fisheries: cultural learnings and experience of Waikato-Tainui

Julian Williams1

1. Waikato Raupatu River Trust, Hamilton, New Zealand

Since its arrival to Aotearoa (New Zealand), Waikato-Tainui have held dominion over lands and waters in the upper section of the Waikato River catchment. This area includes the country’s longest and most biodiverse river system, after the ‘New Zealand land wars’ of the 1860s, the Crown unjustly confiscated over 1.2 million acres of Waikato-Tainui lands. The lands were subsequently drained and converted for horticultural and agricultural purposes, whilst the River was dammed for energy generation and now supplies water to many communities and two cities, including Auckland, our largest city. In 1995, Waikato-Tainui settled an historic land settlement package with the Crown, but left the tough conversation of redress for the Waikato River for the next generation. Therefore, in 2008, Waikato-Tainui negotiated co-management arrangements through the Treaty Settlement process to restore and protect the health and well-being of the Waikato River for future generations. Along with many other co-management agreements, the tribe has further developed integrated tools that incorporate traditional practices which provides for cultural activities in freshwater fisheries. With the assistance of respective agencies, the tribe has successfully engaged in regulations and bylaws, in conjunction with significant research to recognise the tribes aspirations and achieve the purpose of the settlement. Julian will provide a snapshot of the health of the River in the eyes of the tribe, share the experiences of integrated management and priorities for the next generations in consideration of balancing the expectations of the community and commercial partners.

Trait variation: it exists and it matters (and are our fish shrinking?)

John Morrongiello1

1. Oceans and Atmosphere Flagship, CSIRO, Hobart, TAS, Australia

Organisms inhabiting aquatic environments, be they bugs, fish, plants or crabs, are exposed to a range of selective pressures such as variable flow, temperature, biotic interactions and fishing that play a fundamental role in determining whether they live, die, grow, reproduce and by how much. Central to this equation is the fundamental tenet that natural selection operates on the individuals, the result of which underpin population and species level demographic metrics such as mortality schedules, ages at maturity and developmental times. Understanding linkages among individual level traits, population ecology and species evolution however requires recognition that individuals and species do not exist in isolation but are part of a broader eco-evolutionary context. Natural and anthropogenic environmental gradients drive the expression of within- and among species phenotypic variability in forms of plasticity, life history adaptation or foraging and these in turn alter the ecological outcomes of among species biotic interactions such as predation and competition. Despite the strong ecological ramifications of trait variation and its obvious importance to species and environmental management and conservation, relatively few studies of Australian aquatic environment have examined the evolutionary and ecological trajectories of trait variation. Here, I will provide an overview of why we should care about understanding trait-based evolution and ecology. I will then present a short case study illustrating how trait variation can be practically used to disentangle the relative importance of oceanic warming and fishing pressure in driving long-term trends in fish size in SE Australia.

Modelling the consequences of differential fishing incidental mortality on susceptible behaviour types of wandering albatross

Gregory N Tuck1, Robin B Thomson1, Christophe Barbraud2, Karine Delord3, Maite Louzao4, Henri Weimerskirch5,6

1. Wealth from Oceans Flagship, CSIRO, Hobart, Tasmania, Australia
2. Centre d’Etudes Biologiques de Chizé, CNRS, Villiers en Bois, France
3. IOTC, Victoria, Seychelles
4. Centre d’Etudes Biologiques de Chizé, CNRS, Villiers en Bois, France

Several studies have shown that animals (including birds) can exhibit different personality traits that have a strong influence on the survival of an individual and have consequent impacts on population abundance. For harvested populations, given heterogeneous behaviour within wild populations, some individuals may be more susceptible to bycatch and more likely to be removed from the population. Here we describe an age, sex, life-stage and spatially structured population model applied to the Crozet wandering albatross population. This model includes complete seasonal and temporal distributions of fishing effort and foraging distributions to estimate temporal overlaps, fishery catchability and consequent bycatch. Results show that the model was not able to replicate the observed data without making broad assumptions about seabird catchability from the pelagic longline fleets and seabird behaviour. Namely, the rapid decline in breeding pairs observed between the late 1960s and the early 1970s could not be explained without assuming a heterogenous population in which some birds were behaviourally more susceptible to fisheries bycatch. This paper is the first to attempt to explain major changes in population size through differential fishing impacts on specific population phenotypes, and highlights the need for greater consideration of the ecological and management consequences of selective harvesting of susceptible behaviour types for seabirds, and other bycatch species.

Inter- and intra-specific variation in freshwater fish life history traits and the role of hydrology, phylogeny and spatial structuring

Mark J Kennard1,2, David Sternberg3

1. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
2. National Environmental Research Program Northern Australian Hub, Australia
3. Centre d’Etudes Biologiques de Chizé, CNRS, Villiers en Bois, France

Quantifying variation in functional traits across a range of taxonomic and environmental scales can provide insight into species’ niche requirements and mechanisms of community assembly, and be used to predict ecological responses to changing environmental conditions. This paper synthesises our recent work to understand the environmental, spatial and phylogenetic determinants of freshwater fish life-history traits and functional composition of Australian rivers. We also examine the phylogenetic and spatial structure of intra-specific variation in key life-history traits of the Australian smelt Petrobrus semoco sampled across a gradient of hydrological variability in 19 eastern Australian rivers. Variation in total fecundity had a stronger phylogenetic signal than variation in egg size. After accounting for the influence of phylogeny, spatial variation in both life history traits was related to gradients of hydrological variability, accessibility and stability. Intra-specific variation in fecundity and egg size, coupled with local spatial autocorrelation at scales of population connectivity up to 100 km, and differences in life-history trait expression between geographically distinct clades observed in this study, suggest a high potential for ambiguous trait-environment relationships in studies conducted at coarse spatial grains (e.g. river basins) or higher taxonomic levels (i.e. species). Quantifying the spatial structure of intra-specific life history trait variation, key intra-specific trait-environment relationships, and the rates at which life-history traits may respond to local conditions within a phylogenetic framework in this study has important implications for future works seeking to understand population or species responses to changing environmental conditions at local to regional scales.
Oral abstracts

Traits and fates: life history characteristics and the decline of native freshwater fishes

Bruce Chessman1

1. University of New South Wales, Kensington, NSW, Australia

Historical evidence suggests that many of the native freshwater fish species of the Murray-Darling Basin have suffered substantial losses of geographic range or abundance in the period since European settlement. However, other native species appear to have avoided dramatic population declines. I compared life history traits of more-impacted and less-impacted species with the aim of obtaining insights into possible reasons for differences in their fates. More-impacted species tended to mature at a significantly greater age than less-impacted species, and to spawn for shorter periods and at lower threshold temperatures. However, there was no significant overall difference between two groups in maximum body size, fecundity, egg type (adhesive/non-adhesive and buoyant/non-buoyant) or degree of parental care. Later maturation and a short spawning season at lower temperatures may render native species more vulnerable to biologically cold water piscivorous fishes and loss of winter-spring flooding as a result of river regulation.

Wet season movements of barramundi and forktail catfish: the role of fish movement as a driver of food web subsidies in a tropical lowland river

David Crook1, Duncan Buckle, Michael Douglas

1. Charles Darwin University, Darwin, NT, Australia

Flows have long been recognised as critical to the maintenance of food-web productivity in lowland rivers, but the associated mechanisms remain only partially understood. Large-bodied fish comprise a major component of the faunal bio-mass in healthy lowland rivers, and their movements are responsible for the transport of large amounts of assimilated energy within aquatic ecosystems and across ecotones. The movement of energy by fish often functions as a critical energetic "subsidy" that supports food webs in receiving habitats or ecosystems. For example, recent stable isotope analyses demonstrate that the productivity of fish populations in the Northern Australian rivers is highly reliant on relatively short periods of floodplain inundation during the wet season that facilitate the transfer of energy from the floodplains to the main channel. To determine the role of fish movement in delivering energy subsidies, we conducted a radio telemetry study of the wet season movements of 40 barramundi (Lates calcarifer) and 30 forktail catfish (Neoarius leptaspis) in the South Alligator River in Kakadu National Park. Individual fish were tracked by boat or helicopter every two weeks from October 2013 to May 2014 and their use of main channel and floodplain habitats examined throughout the wet season. The findings of the study are used to draw conclusions regarding the importance of inundated floodplains as fish habitat during the wet season and to obtain a better understanding of the nature of the energetic subsidies provided by floodplains in tropical lowland rivers.

The movement, fidelity and behaviour of non-recreational elasmobranchs associated with a Sydney Offshore Artificial Reef (OAR)

Krystle Keller1, Iain Suthers2, Michael Lowry2

1. School of Biological, Earth and Environmental Sciences (BESS), University of New South Wales, , Randwick, NSW, Australia
2. Resource Assessment Unit, NSW Primary Industries, Nelson Bay, NSW, Australia

Assessing movement patterns of fish communities associated with artificial reef systems is important for examining the degree of connectivity between proximal natural reefs and the degree of site fidelity with the artificial reef system. Higher levels of fidelity with artificial reef systems suggest that artificial reefs provide suitable habitat and thus contribute to the local production of fish, whereas low site fidelity would suggest that these reefs are little more than fish attractants. The Eastern Fiddler Ray (Trygonorrhina fasciata) and the Port Jackson Shark (Heterodontus portusjacksoni) occur along the eastern coast of Australia and are common by-catch species in bottom trawl, gillnet and long-line fisheries. In this study, 9 Eastern Fiddler rays and 17 Port Jackson sharks were surgically implanted with a VEMCO acoustic tag to record the movements, activity, behaviour and residency around an Offshore Artificial Reef (OAR) located 1.5 km off South Head, Sydney Harbour. Connectivity of the OAR with surrounding natural reefs is determined by comparing the OAR data with downloads from 10-15 existing receivers within an established VWSR Positioning System (VPS) acoustic array. During the initial study period from June 2013 to February 2014, T. fasciata was most active and highly resident at the OAR during daylight hours. In contrast, H. portusjacksoni was mostly nocturnal and moved between sites, but was predominantly resident at the OAR. The preliminary results suggest that the OAR supports elasmobranch and other non-recreational species, indicating the potential for production to occur on offshore artificial reefs.

Mass-marking fish larvae via maternal transmission of enriched stable isotopes

Danswell Starr1, Brendan C Ebner2, Stephen M Enggins2, Christopher Fulton1

1. Research School of Biology, Australian National University, Canberra, ACT, Australia
2. Ecosystem Sciences, and TropWATER, James Cook University, Atherton, QLD, Australia

Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

Mass-marking fish larvae can facilitate studies exploring connectivity and dispersal patterns of early life history phases. Maternal injections of enriched stable isotopes can provide a means of mass-marking fish larvae during the embryonic phase, because the enriched stable isotopes become incorporated into the larval otoliths (transgenerational marking). However, this is a recent technique that has seen limited development and application. We explored the efficacy of transgenerational marking in the Purple-spotted gudgeon (Magurina adspera) and Eastern rainbowfish (Melanotaenia splendida), and through a meta-anal- ysis, evaluated the effects of this technique on larval fish morphology and growth across a range of marine and freshwater fishes. Transgenerational marking was highly effective, enabling mass-marking of larvae produced by adult females for up to 6 months post-injection. Multiple unique markers could be produced, with minimal impacts on larval morphology, survival and growth. Our meta-analysis revealed minimal effects on marked larvae, suggesting that this technique may be applied to explore dispersal and connectivity in aquatic ecosystems.

Movement pattern and habitat use of giant trevally Caranx ignobilis in offshore reef habitats

Elodie J.I. Ledge1, Colin A. Simpfendorfer2, Michelle R. Heupel2, Andrew J. Tobin3

1. Centre for Sustainable Tropical Fisheries and Aquaculture & School of Earth and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
2. Australian Institute of Marine Science, Townsville, Queensland, Australia
3. Research School of Biology, Australian National University, Canberra, ACT, Australia

Passive acoustic monitoring was used to track the movements of 20 Caranx ignobilis at offshore reefs in the Great Barrier Reef from 2012 to 2014. Acoustic monitoring allows long-term monitoring of the marine animal behaviour and movement via a network of listening stations. The 20 tagged sharks were deployed on seven offshore reefs. Traditional spatial statistics (e.g. activity space) and network analysis (NA) determined temporal movement patterns and habitat use of this reef predator. NA is an alternative approach that treats listening stations as network nodes and analyses movement based on flows between nodes. NA provides new and useful interpretations of tracking data not provided by traditional approaches. Individual Caranx ignobilis were present in the study region between 9 and 205 days (mean = 76). Caranx ignobilis were only detected at the reef they were caught and were primarily restricted to the eastern side of that reef. Preliminary results showed tide, time of day and size of fish influenced size and location of activity spaces. In addition, Caranx ignobilis individual pathways within each reef varied with time of day, height of tide and size of fish. By defining space use patterns of this important reef predator, the results of this study may improve understanding of functional connectivity within offshore reef habitats and help provide guidance for their management.

Connectivity, phylogeography and behaviour of a desert-dwelling fish: does habitat matter?

Samantha J. Moseley1, David G Chapple1, Nicholas P Moran2, Bob BBM Wong1

1. Murdoch University, Clayton, VIC, Australia
2. Australian Institute of Marine Science, Townsville, Queensland, Australia

While dispersal and connectivity are crucial processes for individuals and species, a range of systems remain understudied and our understanding of the behavioural underpinnings is limited. Moreover, natural habitat patches are rarely homogeneous over space and time, ensuring that understanding movement responses can be complex. The desert goby Chiomythus gonorhizus is a re- markable fish endemic to arid South Australia, a naturally dynamic environment in which water is scarce and fragmented, and large expanses of dry land comprise the major barriers to aquatic dispersal. Additionally, habitat variation can be partitioned into two characteristic types: permanent, groundwater-fed springs and highly variable, ephemeral rivers. Consequently, spring and river fish are likely to experience different costs and benefits of dispersal, and potentially, divergent selection regimes and opportu- nities for movement. We examined the effects of habitat variation on dispersal using both molecular and behavioural approaches. Using a comparison of populations from springs and rivers, we present (i) the results of a mitochondrial DNA based phylogeo- graphy for the species, and (ii) experimental data on exploratory and dispersal (emigration) propensities. While we found that some springs contained higher levels of genetic diversity, our behavioural measures detected limited evidence for adaptive shifts in dispersal and exploration. Thus, despite strong potential for divergent selection, dispersal behaviour in the desert goby conforms to a traditional prediction of high phenotypic plasticity, an important mechanism in potentially mediating impacts of future environmental change.

1. Department of Biological, Earth and Environmental Sciences (BESS), University of New South Wales, , Randwick, NSW, Australia
2. Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
The trophic relationships of the platypus along an urban gradient

Melissa Klain, Ross Thompson, Josh Griffiths, Tom Kelly, Jenny Davis

1. School of Biological Sciences, Monash University, Clayton, Victoria, Australia
2. Institute for Applied Ecology, University of Canberra, Canberra, Australia
3. cesar, Melbourne, Victoria, Australia
4. cesar, Melbourne, Victoria, Australia
5. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia

The impacts of urbanisation on aquatic ecosystems have been well described and include; a loss of riparian vegetation, flashier hydrology, altered channel morphology, elevated concentrations of toxicants and associated poorer water quality. These impacts in turn have consequences for algal biomass and organic matter inputs. The ultimate effects on the aquatic invertebrate biota include a decrease in sensitive taxa, an increase in tolerant taxa and an overall decrease in invertebrate richness and abundance. Many of these factors have been related to platypus presence, suggesting that increasing urbanisation will affect the platypus, its diet, habitat and distribution. Trophic relationships of the platypus were investigated at three sites spanning a gradient of urbanisation in Victoria during autumn, 2013. Food webs were compared using stable isotope analysis of platypus fur, basal carbon resources and potential dietary items. The consumption of a wide range of invertebrates at all sites indicate the flexibility of the platypus’ diet and suggest that it is likely to be factors other than food supply that have resulted in local declines in the presence of platypus.

Using stable isotopes to identify important food sources of common fish associated with native and exotic riparian vegetation

Agnes D Lautenschlager, Ty G Matthews, Travis J Howson

1. School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia
2. Department of Environment and Sustainable Development, Canberra, ACT, Australia
3. Research Grant has been partially funded by the NSW Department of Environment and Heritage, including replacement with exotics and complete clearing of streamside vegetation. These modifications can alter flow regimes, patterns of seasonal leaf-fall and the palatability of in-stream leaf litter material to aquatic primary consumers with potential flow-on effects on trophic pathways. We determined the C and N stable isotope signatures of biofilm, leaf packs, freshwater macrophytes and riparian vegetation as well as common native and introduced fish (brown trout Salmo trutta, common galaxias Galaxias galaxias, short-finned eel Anguilla australis and ammocoetes of the short-headed lamprey Mordacia mandax) and macroinvertebrate species from reaches of native forest, introduced willows, cleared areas and native revegetation in the Gellibrand River catchment, Otway forest Victoria. Our aims were to determine possible differences between primary producer signatures and to identify whether trophic pathways of different fish species are linked, including willows, and/or in-stream primary producers. We expected biofilm to dominate food webs in cleared areas and tested whether signatures differed between willow areas, forest and revegetated areas due to shading, leaf-fall patterns and leaf palatability. Against expectations, biofilm and macrophytes in willow and cleared areas did not have a greater influence on consumer species. Diet input of riparian vegetation and other primary producers was highly variable and calls for further study. Surprisingly, the stable isotope signatures of lamprey ammocoetes (which are considered filter feeders) were very dissimilar to all other consumers and do not reflect any of the diet sources analysed.

The Ecology of the Desert Goby: Community level interactions and individual level variability

Nicholas P Moran, Kristynda D Mossop, Bob BM Wong, Ross M Thompson

1. School of Biological Sciences, Monash University, Clayton North, VIC, Australia
2. Institute of Applied Ecology, University of Canberra, Bruce, ACT, Australia
3. University of Technology, Sydney, Australia
4. Texas A & M University, USA

Fish freshwater inflows to estuaries: do organic carbon subsidies support zooplankton production

James N Hitchcock, Simon M Mitrovic, Wade L Hadwen3, Daniel L Roelke1, Ior O Grooms2

1. University of Technology, Sydney, Broadway, NSW, Australia
2. NSW Office of Water, Australia
3. University, QLD, Australia

Finding a balance between gear and effort based management strategies to promote stock recovery in South Australia’s Garfish Fishery

Mike A Steer1, Rick McGarvey2

1. SARDI (Aquatic Sciences), West Beach, SA, Australia
2. SARDI Aquatic Sciences, South Australia

ASFB & ASL Congress 30 June – 3 July 2014 www.asfbsl.org.au

ASFB & ASL Congress 30 June – 3 July 2014 www.asfbsl.org.au
Southern garfish (Hyporhamphus melanochir) occurs across southern Australia including WA, SA, Victoria and Tasmania. In WA, it is the most commercially important recreational fishery species. The main commercial fishery for this species in WA is in Cockburn Sound, a marine embayment in the Perth area. Approximately half of the recreational catch is also taken in Cockburn Sound. Catch rate trends suggest a gradual decline in the abundance of garfish in Cockburn Sound over the past 2 decades, with a pronounced decline since 2011 following a marine ‘heatwave’ event in the region. Recent fishery sampling indicates a truncated age structure (mostly aged <2 yr) and a relatively high rate of total mortality (Z = 1.6) acting on this population, substantially higher than the previous estimate (Z = 0.98 estimated in 1998). The rate of mortality and the current age composition of this population is similar to that observed in garfish stocks in SA, which have been assessed as ‘over-exploited.’ Interestingly, the impact of high mortality in Cockburn Sound appears to be partly compensated for by an unusually low age-at-maturity of approximately 6 months. This is about 1 year lower that what is attained by this species in SA. It is unclear whether the low age-at-maturity in Cockburn Sound is fishing-induced or environmentally driven.

Combining indices of abundance from multiple surveys provides recruitment estimates for a widely distributed species in the NE Atlantic; Blue whiting

1. Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Galway, Ireland

The extensive distribution of blue whiting (Micromesistius poutassou) spans 35 degrees of latitude in the NE Atlantic. Strong recruitment in the early 2000s made blue whiting one of the world’s largest fishes; 2.5 million tonnes were landed in 2004. Recruitment dropped sharply in 2006, but the fishery maintained catches of 1 tonne until 2008. Subsequent fluctuations in stock status and TAC reductions to less than 2% of the 2004 landings (40,000t in 2011) have created strong imperatives for improved assessments and management advice. A robust index of recruitment for blue whiting does not exist. Indices previously used in assessment are problematic due to poor survey coverage and unreliable acoustic detection for small fish in the demersal zone. Whilst these indices were useful during high recruitment events, they were ineffective during periods of low recruitment (estimating zero recruitment in some years), and data were subsequently excluded from the stock assessment. Current assessments are consequently over reliant on model-derived recruitment indices.

We present a robust, standardised recruitment index derived from a combination of under-utilised ground fish surveys. Integrating over a million data-points across three decades, we apply advanced modelling techniques to estimate the recruitment of blue whiting in the Southern region of its distribution. Recruitment signals are evident in the surveyed area, and indicate less variability than suggested by the previous problematic indices. This study demonstrates the utility of examining previously neglected data sources to help resolve critical issues in fisheries resource assessment.

An experimental analysis of assignment problems & economic rent distribution in quota managed fisheries

1. Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia

If the spatial and temporal distribution of resources is not homogenous it creates an assignment problem. While the adoption of individual (or transferable) quota management in many commercial fisheries has resolved issues of over- appropriation, assignment problems may remain due to the spatial and temporal complexity of fisheries resources, which creates heterogeneity in the economic value of catches. This leads to competition between fishers for the most valuable portions of the stock and dissipation of economic rent. In order to solve an assignment problem, either the quota units must be fully delineated in time or space, or fishers need to cooperate more efficiently. When fishers’ sociocultural background, wealth, business structure and/or expertise are heterogeneous, reaching an agreement on a preferred strategy for solving an assignment problem can be particularly challenging, because some may see themselves as disproportionately more affected by its adoption. To investigate whether an assignment problem could be effectively managed by two types of fishers (lease quota fishers and quota owners), a series of economic experiments were conducted. Participants were more likely to cooperate and make socially optimal decisions to prevent rent dissipation when they could communicate amongst themselves and were in an experimental group containing solely quota owners. Experimental groups containing both types of fishers were less likely to cooperate because lease quota fishers may have seen themselves as disproportionately more affected by the adoption of a socially-preferred strategy for preventing rent dissipation due to: (i) inequality in wealth, (ii) insecurity of tenure, and (iii) asymmetric information exchange.

An Australian science communication case study based on the endangered fish red-finned blue-eye, Scaturgignichthys vermeilipinnis

1. Bush Heritage Australia, Clmontar, QLD, Australia

Despite the accepted need for better communication of science and research to non-scientific audiences, peer reviewed papers remain the most frequent – and frequently the only – method by which research results are communicated. Criticism of this practice in isolation is unlikely to present the results to a wider audience because the majority of non-scientific readers do not consult scientific journals. In this review the communication methods used to publicise a project concerning the conservation of a small endangered fish from the Australian semi-arid west are discussed. The research recommendations are only partly being used such methods to promote research projects. The problem of evaluating such strategies is also discussed, as this is most often an exercise in subjectivism, and as such difficult to quantify using traditional measurement methods. The case study demonstrates that harnessing a range of communication media (radio, television, internet, magazines, books, public speaking and formal papers) combined with a spatial approach (local, regional, national and international) is a sensible way to garner support and encourage interest in what are often esoteric and obscure research endeavours.

Engaging marine communities in climate science using their own data, and the learning curve of social media tools

1. James Cook University, Douglas, QLD, Australia

There is growing interest in engaging citizen scientists in research and conservation efforts. Citizen scientists can collect data across a large spatial and temporal scales that cannot feasibly be covered through traditional research programs. The porcupine rayUrogymnus asperrimus is a rare and poorly understood species that is potentially one of the most vulnerable chondrichthyan to climate change. The Great Porcupine Ray Hunt engaged the Australian recreational SCUBA diving community in collecting information on the species’ occurrence, distribution, behaviour and habitat associations. ‘Crowd sourcing’ of recreational diver monitoring effort was achieved through social media (facebook and blogs), diving publications, the internet, email lists, and the Eye on the Reef monitoring program. Recreational divers provided 29 new valid records ranging from Western Australia to the Southern Great Barrier Reef, and even from the Louside Archipelago in Papua New Guinea. Submissions also included video footage of foraging and mating behaviour. While relatively few observations were received, the submitted data doubled the number of observations for the species in Australia, confirmed the species’ survival potential hot spots’ provided a depth range for the species and extended the species’ range by over 100 km. In doing so, the project demonstrated the potential for citizen scientists to contribute valuable knowledge about rare species, facilitate community education and awareness raising, and provide preliminary data to drive new research projects. Nevertheless, it is not a practice that can be considered a ‘silver bullet’; it requires considerable management and planning for the potential limitations of Citizen Science before approaching the public to participate in research.
Oral abstracts

ISPY Fish, You SPY Fish, We all SPY Fish
Jo Woolf1, Simon Cassanella1, Tim Barlow1
1. GRICMA, Shepparton, VIC, Australia

The rivers and wetlands of the Goulburn Broken Catchment provide substantial recreational fishing opportunities, and support number of threatened fish species such as Murray Cod, Macquarie Perch, and Trout Cod. The ISPY Fish app, developed by the Goulburn Broken Catchment Management Authority and Sumo Software has been built upon the highly successful ISPY Frog Application launched in 2012. ISPY Fish is a mobile-based interactive tool presenting information on all fish species occurring in the Catchment. Primarily targeted at recreational fishers, other users include scientists, naturalists, students and natural resource managers. Colour images, physical descriptions, ecological information and conservation status are provided for 21 native, and nine alien, fish species. The App allows users to upload photos and catch detail (species, weight, location, etc) to an ISPY Fish Facebook page, where data is collated to assist river and wetland management, thereby facilitating citizen science community and activity participation in aquatic resource management.

iSPY Fish is available for Apple and Android operating systems.

Enhancing conservation of Australian freshwater ecosystems: identification of freshwater flagship fish species and relevant target audiences
Brendan C Ebner1
1. CSIRO and TropWATER, JCU, Atherton, QLD, Australia

Flagship species, especially mammals and birds, are commonly used to increase awareness of conservation issues in marine and terrestrial ecosystems. However, comparable initiatives are scarce in the freshwater context. Furthermore, freshwaters of Australia support few aquatic mammal species. To explore the potential for freshwater species to act as flagship species in Australia, 230 fish species were assessed for their potential to appeal to a broad cross section of society. This was achieved using characteristics that have been identified as useful correlates of flagship status species in terrestrial systems; specifically relating to body size, trophic guild and threatened species status. Then, groups with an interest in Australian native fishes were identified based on expert opinion, given that engaging the public with conservation issues in freshwater systems might be more effective if the link between fish species and people were better understood.

Natural champions for fish habitat – building capacity in Australia’s recreational fishing community through the Fish Habitat Network
Charlotte Jenkins1, Liz Baker1, Craig Copeland1
1. NSW Department of Primary Industries, Wollongbar, NSW, Australia

An estimated 3.5 million people in Australia fish each year. In New South Wales, one in four people identify themselves as a recreational fisher. Until recently this large stakeholder group had been largely overlooked in natural resources management activities including fisheries management. The understanding of the relationship between habitat and fisheries productivity by this large stakeholder group was also recognised as limited. This dissertation is in direct contrast to recreational fishers in the Northern hemisphere where individual fishers, fishing clubs and organisations play a pivotal role in protecting and restoring their rivers, lakes and estuaries, and are considered as active conservationists.

In recognition of this paucity of fisher engagement, Fisheries NSW launched the Fishers for Fish Habitat Program in 2008 with funding from the NSW Recreational Fishing Trusts. The Fishers for Fish Habitat (F4FH) Program developed an evidence-based approach to communicating with the highly diverse recreational fishing community about habitat and pursued multiple strategies for improving levels of participation in habitat-related activities.

The Fish Habitat Network (FHN) is one of the Program’s key communication strategies. Established in 2009 as an informal collective of like-minded people, supported by government representatives, the FHN is the first and only fish habitat focused partnership. With nearly 20 organisations and a network of everyday fishers the Network’s collective vision is to improve the quality of fishing through Australia through active engagement of Australia’s recreational fishing community in the protection, restoration and enhancement of fish habitat.

Oral abstracts

Depth and space use of coral trout (Plectropomus leopardus) using passive acoustic tracking
Jordan K Matley1, Michelle R Heupel1, Colin A Simpfendorfer1
1. Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia

Understanding the extent and frequency that fish make movements can help define the seasonal importance of different habitats and isolate spatial and temporal vulnerability to exploitation. Coral trout (Plectropomus leopardus) is one of the main targeted fish species in the Great Barrier Reef (GBR) and concern exists that this species may be at risk from overfishing during the spawning season. The objective of this study was to determine long-term space use patterns of P. leopardus and identify any associated temporal variation that may affect vulnerability to fishing. Passive acoustic tracking was conducted at Heron Island and One Tree Island within the GBR, Australia. A total of 124 P. leopardus were implanted with V13P acoustic transmitters between 2010 and 2012. Forty-five VR2W receivers were deployed at both reefs to track the movements of tagged individuals. The influence of time of day, season, and location on several movement measures were investigated. Results showed increased horizontal movements and higher activity in deeper water during the day in the austral summer. Movement patterns, both vertically and horizontally, appeared to be influenced by either foraging or reproductive drivers. Despite increased movements during summer, individuals typically remained in a small area ~0.5 km2 throughout the year indicating that long range spawning-related movements are rare. This study is important because it provides long-term (~3 years) movement data with extensive reef coverage of an economically significant reef fish and increases knowledge of spatial and temporal space use patterns that may be driven by two key biological demands.

The importance of natural flow to the recruitment success of an amphidromous shrimp in tropical Northern Australia
Peter Noyce1, Michael Douglass1, Erica Garcia1, Peter Bayliss2, Brad Pusey3
1. Charles Darwin University, Darwin, NT, Australia
2. Commonwealth Scientific and Industrial Research Organisation, Brisbane
3. Griffith University, Brisbane

Tropical rivers in Northern Australia are largely pristine, however they are facing threats from developments that require water extraction or damming. It is crucial then, to understand the importance of river connectivity to productivity and biodiversity. Macrobrachium sp. is thought to be amphidromous, plays a critical role in riverine food webs and is culturally significant to Indigenous and non-Indigenous people. There are however, considerable gaps in our knowledge of its life history. This project collected adults and larvae over two years from the Daly River, Northern Territory and conducted a series of laboratory experiments to determine patterns of reproduction, abundance and migratory behaviour. We found that reproduction at the end of the river and that females were not moving downstream to the estuary to breed. Larvae were produced in high numbers throughout the river and required saltwater to develop. Larvae have only 5-7 days to reach saltwater, making flow a critical determinant in successful recruitment.

This study confirms the amphidromous life history of M. spinipes and highlights the importance of natural flows for maintaining existing populations.

Divergent thermal performance thresholds in wild, co-habiting stingrays (Dasyatis fluviornum and Trygonoptera testacea)
Tegan A Marzullo1, Iain M Suthers1, Matthew D Taylor2, Nathan A Knot1, Nicholas L Payne4
1. University of New South Wales, Sydney, NSW
2. Port Stephens Fisheries Institute, Department of Primary Industries and Fisheries, Port Stephens, NSW
3. Jervis Bay Marine Park Authority, Department of Primary Industries, Jervis Bay, NSW
4. National Institute of Polar Research, Tokyo, Japan

An organism’s capacity to cope with variable temperature will depend on its ability to balance physiological constraints against a suite of dynamic biological, ecological and environmental factors. Recent meta-analyses suggest physiological adaptation to local temperatures may largely be constrained by phylogeny, yet a paucity of thermal performance data from free-ranging animals is a major hindrance to predicting the response of various taxa to future increases in temperature. We compared thermal performance activity and habitat selection in two species of wild stingrays that have different biogeographies (the temperate Trygonoptera testacea and sub-tropical Dasyatis fluviornum), inhabiting the same estuary. We predicted that regional adaptation would result in similar thermal thresholds, whereas divergent thresholds would indicate phylogenetic constraint. For the temperate T. testacea, performance increased up to 23.9°C and declined thereafter. For the tropical D. fluviornum, performance continued to increase up to the maximum temperature recorded (26.4°C). We also found evidence for thermal habitat selection, in which T. testacea exhibit avoidance of temperatures above their thermal optimum, compared to D. fluviornum that showed no avoidance. While D. fluviornum were diurnal, T. testacea were nocturnally active, with their degree of nocturnality linking to a temperature-dependent increase, followed by a potential loss of locomotive performance beyond the thermal optimum. These data indicate that sympathy, ecologically similar species can have divergent physiological and behavioural responses to local temperature. This pattern highlights the constraints that phylogeny can impose on thermal performance thresholds, and suggests that future increases in temperature are likely to have different impacts within taxonomic groups.
A mobile predator? Variable space and depth use patterns of an exploited coral reef fish
Leanne M Currey1,12, Michelle R Heuvel1,13, Colin A Simpfendorfer4 and Ashley J Williams1,4

1. Australian Institute of Marine Science, Townsville, QLD, Australia
2. AMRI/JCU, Townsville, QLD, Australia
3. Creative Reef Laboratories, Sustainable Tropical Fisheries and Aquaculture & School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, Australia
4. Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia

Movement influences the distribution and abundance of populations. Movement pattern is particularly useful for parameterising assessments and designing management strategies for exploited fish populations. Despite importance to fisheries, limited empirical evidence has portrayed adult turtle goby as sedentary with small home ranges as and mobile predators that potentially migrate long distances. To distinguish the typical movement patterns of redthroat emperor (Lethrinus miniatus), horizontal and vertical activity space use and depth utilisation were investigated. Sixty individuals were monitored for up to 12 months using an acoustic telemetry network comprising three reefs in the Great Barrier Reef, Australia. Evidence supporting a mobile lifestyle includes broad-scale movement (~16km) of one individual, periods of non-detection and potential movement away from the reef edge at night. Yet most individuals displayed high site fidelity and moderate-sized horizontal activity spaces (~4km2) over a period of up to 12 months. Individuals inhabited a variety of depths with an absence of consistent trends based on time or size of individuals. Variation in movement among adult redthroat emperor indicates that while some individuals migrate over long distances, spatial closures that cover individual reefs (~4km2) could provide protection from fishing for the more resident proportion of the population.

Hydrological connectivity between wetlands and rivers and its implication for fish biota: a case with lynd microbiota data to connectivity quantification
Fazal Karim1, Dushmanta Dutta1, Nathan Watham3, Steve Marvanek1, Gsan Petheram1, Jim Wallace1, Damien Burrows2

1. CSIRO, Acton, ACT, Australia
2. TropWater, James Cook University, Townsville

Wetlands are important refugia for many freshwater aquatic biota. As part of the Flinders and Gilbert Agricultural Resource Assessment, hydrological connectivity of a large number of wetlands located in the Flinders floodplain and estuarine environment were investigated and fish assemblages were sampled at selected sites. These two sets of information were combined to explore key linkages between the timing and duration of wetland connectivity and surveyed fish assemblages. The connectivity assessment was conducted using a floodplain hydrodynamic model (MIKE 21) and fish assemblages were sampled using a back-pack electrofisher, combined with gill and seine seine nets. Model predicted flood inundation information was combined with wetland connectivity analysis to investigate the extent that fish migration into estuarine habitats only and did not migrate from estuarine water at any point throughout their life history. Although N. graeffei commonly occurred in both freshwater and estuarine, they did not appear to persistently live in estuarine water during their life with this study. The study also revealed strong variation in water and estuaries and stolichni 87Sr/86Sr isolates corresponding to wet-season and dry-season in water chemistry. We conclude that analysis of otolith and water 87Sr/86Sr is an effective technique for tracking whole-of-life salinity histories of riverine fish.

Oral abstracts

A mobile predator? Variable space and depth use patterns of an exploited coral reef fish
Leanne M Currey1,12, Michelle R Heuvel1,13, Colin A Simpfendorfer4 and Ashley J Williams1,4

1. Australian Institute of Marine Science, Townsville, QLD, Australia
2. AMRI/JCU, Townsville, QLD, Australia
3. Creative Reef Laboratories, Sustainable Tropical Fisheries and Aquaculture & School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, Australia
4. Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia

Movement influences the distribution and abundance of populations. Movement pattern is particularly useful for parameterising assessments and designing management strategies for exploited fish populations. Despite importance to fisheries, limited empirical evidence has portrayed adult turtle goby as sedentary with small home ranges as and mobile predators that potentially migrate long distances. To distinguish the typical movement patterns of redthroat emperor (Lethrinus miniatus), horizontal and vertical activity space use and depth utilisation were investigated. Sixty individuals were monitored for up to 12 months using an acoustic telemetry network comprising three reefs in the Great Barrier Reef, Australia. Evidence supporting a mobile lifestyle includes broad-scale movement (~16km) of one individual, periods of non-detection and potential movement away from the reef edge at night. Yet most individuals displayed high site fidelity and moderate-sized horizontal activity spaces (~4km2) over a period of up to 12 months. Individuals inhabited a variety of depths with an absence of consistent trends based on time or size of individuals. Variation in movement among adult redthroat emperor indicates that while some individuals migrate over long distances, spatial closures that cover individual reefs (~4km2) could provide protection from fishing for the more resident proportion of the population.

Hydrological connectivity between wetlands and rivers and its implication for fish biota: a case with lynd microbiota data to connectivity quantification
Fazal Karim1, Dushmanta Dutta1, Nathan Watham3, Steve Marvanek1, Gsan Petheram1, Jim Wallace1, Damien Burrows2

1. CSIRO, Acton, ACT, Australia
2. TropWater, James Cook University, Townsville

Wetlands are important refugia for many freshwater aquatic biota. As part of the Flinders and Gilbert Agricultural Resource Assessment, hydrological connectivity of a large number of wetlands located in the Flinders floodplain and estuarine environment were investigated and fish assemblages were sampled at selected sites. These two sets of information were combined to explore key linkages between the timing and duration of wetland connectivity and surveyed fish assemblages. The connectivity assessment was conducted using a floodplain hydrodynamic model (MIKE 21) and fish assemblages were sampled using a back-pack electrofisher, combined with gill and seine seine nets. Model predicted flood inundation information was combined with wetland connectivity analysis to investigate the extent that fish migration into estuarine habitats only and did not migrate from estuarine water at any point throughout their life history. Although N. graeffei commonly occurred in both freshwater and estuarine, they did not appear to persistently live in estuarine water during their life with this study. The study also revealed strong variation in water and estuaries and stolichni 87Sr/86Sr isolates corresponding to wet-season and dry-season in water chemistry. We conclude that analysis of otolith and water 87Sr/86Sr is an effective technique for tracking whole-of-life salinity histories of riverine fish.
Oral abstracts

Survival strategies of aquatic invertebrates as a response to drying in intermittent rivers
Sylvia Hay1, Kim Jenkins1, Patrick Driver2, Richard Kingsford1

1. University of New South Wales, Sydney, NSW, Australia
2. NSW Office of Water, Orange, NSW, Australia

Intermittent rivers, or rivers that periodically cease to flow, are the prevalent river type in Australia and occur across many climatic regions. It was long assumed that intermittent rivers had low biodiversity value; however intermittent rivers support a diverse range of taxa, with aquatic invertebrates pivotal in the boom and bust ecology of these systems. During dry periods, aquatic invertebrates may survive in pools, become dormant or disperse as winged adults. Resilience mechanisms, or those that facilitate re-colonisation rather than resistance in-situ, are believed to be the dominant strategy for post-drought recovery by invertebrate communities. We know little however about the survival strategies that aquatic invertebrates use under different environmental conditions, such as different climatic regions or differing lengths of dry period. We investigated dominant physiological and behavioural strategies to survive drying, and contrasted these across different climatic types or biomes. The prevalence of resilience in pools, estuaries and intermittent streams suggests that dispersal as refugial strategies were not effective.

Dormant survival strategies used by invertebrate communities differed between climate types, with refuge pools supporting diverse invertebrate communities in temperate creeks, and dormancy in dry sediments dominant in the semi-arid region. Invertebrate communities exhibited taxonomic and functional redundancy in the survival mechanisms utilised. Invertebrates re-colonising by aerial means were comprised of a distinct group of taxa found rarely using alternative mechanisms. These findings challenge the theory that resilience mechanisms are dominant in promoting recovery of aquatic invertebrate communities after drying.

Now you see them, soon you won’t—freshwater mussel conservation in Australia
Meredith A Brainwood1, Michael W Klinkhammer2, Keith F Walker3

1. Applied Ecology Pty Ltd, MANLY, NSW, Australia
2. School of Veterinary & Life Sciences, Murdoch University, Perth, Western Australia, Australia
3. School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, SA, Australia

Australian freshwater mussels comprise an important component of our river system service economy. But, as sudden population losses can drastically reduce numbers, recruitment failure may inflate extinction debt and increase risk to some of our most ancient of Gondwana assets. As older individuals die and are not replaced, populations disappear within very few years. This process is well advanced in Europe and North America, where mussels are among the most imperilled fauna. Here we highlight cases to suggest Australian freshwater mussels may share similar fates.

In the Hawkesbury-Nepean River (NSW), populations of Unio pictorum have declined sharply over a decade. Von Bertalanffy models and Leslie matrices relating age and growth demonstrate a precarious balance in the localised viability of these populations and show how recruitment failure could be implicated in their decline. In Lake Liddell, (NSW), shelled individuals of Velocoseira ambiguus, Hyndella australis and H. depressa have declined sharply over a decade. Von Bertalanffy models and Leslie matrices relating age and growth demonstrate a precarious balance in the localised viability of these populations and show how recruitment failure could be implicated in their decline. Although the lake may eventually be re-colonised, elimination of such a large population is cause for alarm, particularly given projections of future climate change.

Similarly, in the lower Canning River (WA), reduced freshwater flows into the estuary and unseasonably high tides led to the upstream migration of a salt wedge which resulted in the extirpation of Westralunio carteri in 2010. Recovery may take many years and uncertainties of recruitment success will present a major conservation challenge. The story undoubtedly repeats itself around Australia, and considering similar cases, should spur action towards conservation measures.

Cyclones, catchments and coastal streams: disturbing changes in macroinvertebrate assemblages over seven years
Jane Davies1, Andrew J Boulton1, Darren Ryder3

1. University of New England, Armidale, NSW, Australia
3. School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia

In streams draining heavily forested subtropical catchments, leaf-eating macroinvertebrates (often termed ‘shredders’) play a vital role in organic matter dynamics and maintaining the ecological integrity of the in-stream ecosystem. Vegetation structure of the riparian zone of many forested streams along the eastern coast of Australia has now been modified by invasive plants (e.g. camphor laurel) and human activities such as urbanization and flood mitigation. Superimposed on these disturbances are droughts and cyclones, and flows that fluctuate wildly. Our study explored associations between aquatic invertebrate assemblages and vegetation structure and the changes in flow regime and riparian inputs over seven years in two subtropical streams with differing riparian zone history. Despite major differences in riparian structure and composition, and the impact of cyclonic floods (e.g. Cyclone Oswald that dumped 380 mm of rainfall in 48 hours), shredder densities and aquatic community composition remained remarkably consistent over the seven years and appeared to recover rapidly from pulse disturbances such as cyclone induced spates.

Exploring differences in genetic diversity and population structure of two estuarine fishes from Victoria: the exotic yellowfin goby Acanthogobius flavidus and the native blue spot goby Pseudogobius sp.
Sherrie Chambers1, Kathryn Hassell2, Melissa Carew1, Vincent Petitgrogne1, Masaki Nagae3, Kyloshi Soyano4

1. Department of Zoology, University of Melbourne, Melbourne, Australia
2. Centre for Integrative Animal Identification and Management (CAIM), University of Melbourne, Melbourne, Australia
3. Faculty of Environmental Studies, Nagasaki University, Nagasaki, Japan
4. Institute for East China Sea Research (IECSR), Nagasaki University, Nagasaki, Japan

Genetic differences may introduce threat to native ecosystems, and have the potential to cause declines or even extinctions in native species. However, despite a series of favourable conditions, an introduced species may not be able to successfully establish itself if the number of individuals released into the new environment is too few. Founder effects such as genetic bottlenecks are well documented and can result in a loss of allelic richness in the population, reducing the adaptive potential of the species. In comparison, native populations that have not undergone a genetic bottleneck tend to have greater allelic richness and can therefore have a more complex genetic structure than introduced species occupying the same environment. This work explores differences in genetic diversity and population structure between two estuarine species found in Victoria, the invasive yellowfin goby, Acanthogobius flavidus and the native blue spot goby, Pseudogobius sp. Morphological divergence in Victorian yellowfin gobies is compared to samples from several potential source populations in Japan, and assessment of a similar region in blue spot gobies gives insight into diversity and population differences between native and invasive species. Since both species have been identified as potential bioindicator species for monitoring estuarine health, this work is important in providing an understanding of population dynamics and potential adaptability of the yellowfin goby to local conditions in Australia. Sequencing information may also be used in future studies to assist in characterising genetic differences between the eastern and western morphs of the blue-spot goby.

Invasion of Siamese fighting fish (Ophromenidae) on the Adelaide River floodplain: the Northern Territory’s first serious invasive pest fish
Michael Hammer1, Dean Lonz2, Michelle Skariatos Simos1, Evan Needham1, Thor Saunders3, Murray Barton4

1. Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
2. Parks and Wildlife Commission of the Northern Territory, Adelaide River, NT, Australia
3. Department of Primary Industry and Fisheries, Northern Territory Government, Darwin, NT, Australia
4. School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, SA, Australia

Siamese fighting fish Betta splendens are a well-known and popular aquarium fish kept in captivity around the world. The species is native to central Thailand being a member of a diverse species complex of labyrinth fishes occurring in south-east Asia. Labyrinth fishes typically occur in shallow well-vegetated wetlands and forested swamps, tolerating a wide range of environmental conditions including anaoxia through their capability to breathe air using an auxiliary sponge-like breathing chamber. Recently an invasion of Siamese fighting fish has been discovered on the Adelaide River floodplain, near Darwin in Northern Australia. This represents the first serious alien fish species incursion in the Northern Territory, with reports previously limited to freshwater lakes (Pseudochilus) and closed in isolated habitats, many of which have been controlled by specific actions. This talk discusses the history of establishment and biological notes of Siamese fighting fish on the Adelaide River floodplain, where a very large and extensive population is now known to occur. It also canvases areas for research on likely spread, possible impacts and potential control.

Vagility and vulnerability: Dispersal of adult common carp (Cyprinus carpio, L.) around the Murray-Darling River Basin, Australia
Paul Brown1

1. The Murray Darling Freshwater Research Centre and, La Trobe University, Mildura, VIC, Australia

Common carp (Cyprinus carpio, L.), one of the world’s most invasive fish species, are a major threat to wetland and waterway health throughout Australia and North America. In a study of post-fish vagility and vulnerability, the annual dispersal probable current system (PDS) to provide data for spawning or wintering areas was investigated in adult carp from 2007 to 2011. Carps were tagged and released in multiple groups and locations in the Murray and Darling rivers, Australia. Movements were monitored over four years using an array of acoustic data-logging receivers, PIT tag detecting data loggers and angler recaptures around the Murray-Darling river system (MDB). The study period included low and high flow periods. River level and temperature were evaluated as environmental triggers for carp dispersal using general linear modelling. A significant proportion (33% ± 9.7%) of tagged adult carp dispersed into tributaries. Mean annual dispersal probabilities ranged from 0.04 to 0.51. Carp migration was partial and no fish showed repeated migrations. The influence of river level and temperature on dispersal varied by release-location. Less than 4% of tagged carp were detected at any fishway along the Murray River equipped with PIT tag detectors. Migration characteristics of carp suggest low population-vulnerability to control by point source removal, reinforcing the need for broad scale alternative biological controls that can be simultaneously deployed in multiple locations throughout the MDB.
Oral abstracts

The hard slog: Progress towards a National Carp Biocontrol Program

Dean Gilligan1,2, Ken McColl3
1. Freshwater Ecosystems Research, NSW DPI – Fisheries, Batemans Bay, NSW, Australia
2. Invasive Animals CRC, Canberra, Australia
3. Assistant Director General, CSIRO, Geelong, Victoria, Australia

Evaluations of Cyprinid herpesvirus-3 as a potential biological control agent for carp in Australia continue at the high level bio-safe facility located at CSIRO’s Australian Animal Health Laboratory. Testing has shown that Australian carp are highly susceptible to the C17 strain of Cyprinid herpesvirus-3. CSIRO have now tested susceptibility of 13 representative native fish species, introduced rainbow trout and a mammal, bird and crustacean. Tests of reptiles and amphibians are currently being undertaken. No species has shown any evidence of infection. This concurs with international experience that Cyprinid virus-induced disease is entirely specific to Cyprinidae species to be both effective and safe and no relevant species presents a viable biocontrol option for carp in Australia. Federal and state governments have been briefed on the Invasive Animals CRC’s current carp bio-control development program in preparation for submission of formal applications under the Biological Control Act, Quarantine Act/EPBC Act and AVIMA Act. The Australian Animal Health Laboratory, CSIRO, Darwin and Richmond will be supported to compile the third party technical summaries of the pest status of carp and currently available carp control options, biological and epidemiological data, details of viral production, efficacy, safety, trade, OH&S etc, as well as proposed release and M&E strategies. NSW DPI is currently in the process of compiling these data. Other activities being undertaken to advance the program are: preparation of freeze-dried virus; sequencing the genome of the C17 strain, epidemiological modelling; compilation of international data on the effects of Cyprinid viruses; compilation/collection of benchmark data on carp densities and their environmental impacts; and, development of costing and funding proposals for a staged national carp bio-control program.

Modelling recruitment dynamics of carp under different flow scenarios

Charles Todd1, John Koehn1, Anthony Conallin2, Igor Stuart2, Leigh Thwaites1, Qifeng Ye3, Brenton Zampati3, Paul Brown1, Dean Gilligan2
1. Invasive Animal Research and Development Institute, West Beach, SA
2. Murray-Darling Freshwater Research Centre, Mildura, Vic
3. NSW Department of Primary Industry, Fisheries, Narrandera, NSW

A model of carp life history has been developed to examine, in particular, the recruitment dynamics of carp under different flow regimes. The underlying construct is a 30 age class model with estimates for survival and fecundity for each age class. A number of different spawning habitat types were identified and these habitat types were specified within the model framework. Different larval and strip of the year output from each habitat is specified under different flow regimes and the expected dynamics of carp recruitment. Regional differences have allowed the model to target specific wetlands/reaches in the Murray River. Given a suite of different flow regimes expected, carp dynamics are produced to provide insights to managers on how best to manage flow to minimise carp recruitment.

Cyclones, catchments and coastal streams: disturbing changes in macroinvertebrate assemblages over seven years

John Koehn1, Charles Todd1, Leigh Thwaites1, Igor Stuart2, Qifeng Ye3, Brenton Zampati3, Anthony Conallin2, Lauren Dodd1
1. Arthur Rylah Institute, Heidelberg, Vic, Australia
2. SARL, Adelaide
3. Kingfisher research, Diamond creek
4. Murray CMA, Albury

Environmental water allocations are an increasingly important management option, especially in the Murray-Darling Basin with the implementation of the Basin Plan. Carp are a highly visible, widespread and abundant alien pest fish species that has invasive species attributes (e.g. high fecundity) that allow their populations to expand rapidly. Their spawning and recruitment is enhanced by flooding and hence there is concern that some environmental watering may lead to increases in their populations. To date, most management of environmental flows has ignored the issue of carp production, with most carp management (since the 1970s) focusing on population removal options. This paper illustrates the utility of a carp population model (see accompanying Todd et al. paper) to attempt to ‘quantify’ changes to carp populations from range of environmental watering scenarios including: differences in water allocations; habitat (especially the main channel and off stream wetlands); and, sequencing of flows. Changes to carp populations are placed in the context of other events such as natural flooding and habitat changes. Risk assessments are conducted and management recommendations made to mitigate any impacts of carp. These include: that E-flow objectives for native biota must remain paramount; carp populations increase due to a range of reasons; carp must be managed in conjunction with and downstream of freshwater wetland restoration; and use of regulating structures should be seen as major experiments relating to carp.

Assessment of eco-labeling schemes for Pacific tuna fisheries

David Kirby1, Candice Visser1, Quentin Hanich1
1. Australian National Centre for Ocean Resources and Security, University of Wollongong, Wollongong, NSW, Australia

Developments in fisheries governance in recent decades—notably the 1982 United Nations Convention on the Law of the Sea and the implementation of agreements—have established a framework of principles, standards, institutions and regulations that are broader and more complex than traditional fisheries management, which has generally focused on individual target species. As this framework has evolved, a number of seafood ecolabelling schemes have also developed. These schemes aim to identify well-managed fisheries and give competitive advantage to their products, thus translating the environmental awareness of consumers into direct support for sustainable fishing practices. This paper evaluates a number of these schemes in the context of international fisheries governance principles and considers the conservation benefits that may result from sustainability certification of Pacific tuna fisheries. The paper briefly summarises developments in eco-labeling of Pacific tuna fisheries in relation to the evolution of fisheries management, where focus has shifted from the maximum sustainable yield of individual tuna species to ecosystem-based approaches that directly consider the broader environmental impacts of fishing. The paper discusses two different* Dolphin Safe* eco-labels: the Japanese Mercury Marine and the Better Tuna Project and the potential role of a regional scheme of the Agreement on the International Dolphin Conservation Program, and two broader eco-labels offering sustainability certification of fisheries, ‘Friend of the Sea’ and the ‘Marine Stewardship Council’. The role played by seafood industry associations with sustainability claims, such as the International Seafood Sustainability Foundation, is also considered.

Engaging with the aquaculture industry to increase support for novel biosensor technology

Sarah J Andrewartha1,2
1. CSIRO, Hobart, TAS, Australia

Monitoring of intensively reared aquaculture animals can be difficult. Recent advancements in biosensors have enabled long-term, non-invasive monitoring of a range of physiological and physical variables that are relevant to animal health and productivity. Current monitoring of aquaculture animals are being linked into large scale sensor networks (e.g. sensor T network) that aggregate information from many different data sources, including biosensors. The real-time data produced have the potential to drive farm management decisions and provide insight into difficult problems such as climate change. End-user and community support is integral for uptake of novel technologies such as biosensors. Strong client relationships and can be reinforced by effective publicising and disseminating information via traditional and new media. Maintaining a public profile benefits the science team and can additionally benefit the clients through increased media exposure. This project connects with the public, aquaculture farmers and funding bodies through both traditional (e.g. TV and print) and new media (e.g. Twitter) and community engagement. By utilising media platforms for publicity and information dissemination we aim to increase uptake of our biosensor technology leading to greater data collection and ultimately to better informed management decisions on aquaculture farms.

Ensuring an enduring legacy: the multiple stories of the Native Fish Strategy

Fern Hames1, Anthony Townsend2, Greg Ringwood3, Pam Clunie1, Jonathan McPhail4
1. Department of Primary Industries, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
2. NSW Department of Primary Industries, Conservation Action Unit, Caldas, NSW, Australia
3. River Health and Habitat Restoration, Brisbane, Queensland, Australia
4. PIRSA, Adelaide, South Australia, Australia

The Native Fish Strategy (NFS) is a long term approach to restoring the native fish populations of the Murray-Darling Basin. Since 2003, the NFS program has identified threats, developed and implemented effective management actions, and evaluated the response. The NFS has also embraced connecting with people and worked in partnership with a wide range of stakeholders, including and beyond the scientific community. After a decade of NFS research, action and partnerships, the myriad forms of engagement employed throughout the program are explored, with a particular focus on those used to ensure that the legacy of the NFS is available to all; scientists, NRM practitioners, and the broader community. A range of engagement tools were used during the NFS including printed materials, online platforms, hands on activities and face to face networking. This diversity of methods recognised the wide ranging audiences that have multiple perspectives and multiple methods of accessing information across the Basin.

The Native Fish Strategy products include traditional forms of science communication, such as a special edition of a peer reviewed journal for the scientific community, as well as emerging communication platforms for the wider community. These online products include a comprehensive website for multiple users, a set of short videos on the flagship Demonstration Reach program, an interactive Demonstration Reach ToolBox for NRM practitioners, and the Talking Fish booklets and radio program. To understand the effectiveness of these platforms, it is essential that monitoring programs are established, guiding investment in future programs.
Science Communication and Knowledge Adoption: what is the difference and why should I bother?

Jaana Dielenberg
1. Charles Darwin University, Casuarina, NT, Australia

Within government funded research programs, research uptake is increasingly being used as a key measure of a program’s success. This approach is requiring scientists to drive or participate in science communication and knowledge adoption activities, an area in which many scientists will have received no training. So what is the difference, what is involved, and what are the benefits of spending time on these activities? In this presentation, I will talk about the range of science communication and knowledge adoption activities employed by the Northern Australia Hub of the National Environmental Research Program; the different objectives of activities; and the short and long-term benefits of investing in science communication and knowledge adoption.

Knowledge Brokers: Unique individuals or a flawed concept?

Ben Gawara, Michellehe Kavanagh, Rosie Bussutti
1. MDFRC, Mildura, Vic
2. MDFRC, Wodonga, Vic, Australia

The CRC for Freshwater Ecology had a profound influence on the relationship between the research and water management communities in Australia. One of the initiatives spawned by the CRC FE was implementing the idea of knowledge brokers. Peter Cullen, CRC FE Foundation Chief Executive, believed that translating science into knowledge that could be applied to management and policy questions required both a significant time commitment (that would take researchers away from their core activities) and a special skill set not shared by all researchers. The passage of time has not, however, seen the concept of knowledge brokers flourish in the area of freshwater science. This raises the question of what the investment in Knowledge Broking has taught us in terms of communicating science and improving the relationship between science and management. This talk will reflect on MDFRC’s experience with Knowledge Brokers and explore some of the institutional and institutional characteristics that influence a Knowledge Broker’s capacity to fulfil their role. The presentation will conclude with some reflections on the implications for future investments in science communication.

Freshwater: Gaps in the Atlas of Living Australia

Lee Bribin, Chris Auricht
1. The Atlas of Living Australia, Carlton, TAS, Australia
2. Auricht Projects, Brighton, South Australia, Australia

As of March 2014, the Atlas of Living Australia (ALA: http://www.ala.org.au) has nearly 45 million records of 112 thousand species, 400+ “environmental layers”, ~39 million pages of biological literature, 40 thousand species images and a host of other integrated biogeographic data. What the Atlas lacks however is the identification of freshwater species and national spatial layers that describe their environment. The Atlas has an unknown but large number of observations of freshwater species that can currently only be related to adjacent terrestrial or marine environmental parameters. There is therefore a stark contrast between the services provided by the Atlas to the freshwater community by comparison with those working in terrestrial and marine environments. The Australian National Aquatic Ecosystem (ANAE) Classification Framework aligns nicely with IBRA and IMCRA classifications, but seamless national geospatial layers based on the ANAE are not available. Without those layers, how can freshwater ecosystems be sustained? Successful local and regional trials have been completed and the issue has been raised in public reports but no nationally agreed aquatic outcomes have emerged. There is no champion to maintain a list of species with at least a freshwater phase. How can we attain solutions? Who is best placed to take leadership, provide the resources and catalyse an outcome? The Atlas recognised the gap in data and services, but it does have the infrastructure to support a practical outcome when it occurs (see for example http://lists.ala.org.au and http://spatial.ala.org.au/layers).

Oral abstracts

Life after Kakadu: 25 years of pursuing and applying knowledge on hydro-ecological dynamics in the more complex rivers of north-eastern NSW

Keith A. Bishop
1. Freshwater Biology Consultant, BUNGAMUL, NSW, Australia

This paper provides a series of glimpses into valuable extensive data sets which uniquely display the responses of Australian freshwater fishes and their fisher habitats to flow changes over two decades – often flow manipulations across a set of rivers. Successively, habitat dynamics investigations included aquatic vegetation formations in upper estuaries. An example of these dynamics is provided for an eight kilometre stretch of the Hastings River estuary over fifteen years. Both flood scouring and low flow-mediated salinity impacts are dramatically demonstrated and detailed knowledge of the latter has considerable utility in refining environmental flows in the system. An important theme in the physical habitat investigations has been the availability of fish passage across tidal barrier riffles in systems where significant water extraction occurs upstream. Such work can be quite challenging in lower river reaches which braids. This is the case in the Manning River where verification effort has focused on developing a better understanding of fish migration dynamics. This work, undertaken on two spatial and temporal scales over seven years, has provided unique insights into these dynamics and demonstrated the complexity arising from the less-predictable hydrology in this system. Understanding hydro-ecological dynamics? – long-term, landscape-scale surveying holds the key! Transferring knowledge between system – be cautious!

River recovery: How do macroinvertebrate assemblages change once antecedent flows are restored following years of heavily modified flows?

Harry Eason, Claudette Kellar, Vincent Pettigro
1. CAPIM - University of Melbourne, Parkville, VIC, Australia

Flow dynamics are closely linked to the history traits of freshwater organisms. These organisms have evolved to cope with predictable flow dynamics and patterns of disturbance, such as seasonal flow variation or floods. Many rely on these predictable events and disturbances as signals for mating, hatching, emergence and migration. However, artificially altered flow regimes can interrupt or even prevent these critical life events from occurring. They also alter nutrient concentrations, flow rates and sizes, and habitat availability. Riverine regimes may often change from one extreme to the other little about the time required for rivers to return to a state of good health once human impacts cease is known. In addition, the specific effects of flow on macroinvertebrate morphology and life history traits remains poorly understood. This study aims to assess the effects of flow on macroinvertebrate life traits and morphologies, and to investigate how long a river takes to recover once returned to natural flows. Pretty Valley Creek, located in the Alpine region of Victoria, provides a rare opportunity to study these effects as it was recently returned to antecedent flows and is pollution-free. Using an mBACI design, we investigated changes in the macroinvertebrate assemblages of the creek, both upstream and downstream of the dam. Preliminary analysis indicates rapid recovery of many of the common macroinvertebrate orders following the cessation of artificial flows. This research provides important insights into the length of time required for rivers to return to pre-disturbance levels, and furthers our understanding of how flow affects macroinvertebrate assemblages.

Larval abundance of cod (Maccullochella spp.) during targeted environmental watering in the Mumurrudgee River

J Bindokas, X Jonkisz, B Bino, S Wassens, T St. CLoughe, J Kowalski, L Baumgartner, A Hall
1. New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW
2. Australian Wetlands Rivers and Landscapes Centre, University of New South Wales, Sydney, NSW
3. Institute for Land, Water and Society, Charles Sturt University, Albury, NSW
5. Mumurrudgee Local Land Services, Wagga Wagga, NSW

Successful spawning and recruitment of native freshwater fish species is dependent upon environmental conditions that optimise larval survival and growth. These conditions seldom occur in regulated rivers where altered flows are often unsuitable for native fish spawning and or recruitment. Environmental water targets may target species recovery by restoring key features of the hydrograph. We investigated larval fish abundance in a lowland section of the Mumurrudgee River during a targeted environmental watering event between September and December 2012. The event aimed to increase the inundation of spawning sites for a nesting species (e.g. Murray cod). Estimates of demographic structure indicated that cod (Maccullochella spp.) spawning occurred from mid-October through to early December; coinciding with environmental water delivery. Significant differences in cod abundance occurred among the three in-channel sampling sites. Larval cod abundance was significantly associated with abiotic variables such as electrical conductivity, water temperature, turbidity, nutrients, and river height. Importantly, microclimate abundance peaked during the environmental watering event, providing a food source for larvae. Collectively, these results indicate that environmental water delivery was sufficient to enable spawning, and that the associated ecosystem responses were conducive to the survival and growth of larval fish.
Oral abstracts

Recruitment Ecology of Maccullochella in the Upper Murrumbidgee 2011-2013

Alan Couch, 1 Mark Lintermans, 1 Fiona Dyer, 1 Pat Ross-Magee, 1 Alisa Tischierschke 1

1. Institute for Applied Ecology, University Of Canberra, ACT, Australia

Maccullochella larval ecology in upland rivers has been little studied. This is in contrast to the situation in lowland rivers systems where the recruitment and spawning ecology of cod have been extensively investigated. Six sites spread over 40 kilometres of the Murrumbidgee River in the ACT were sampled for drifting larval fish in the spring/early summer of 2011, 2012 and 2013. Maccullochella larvae were the most common species captured. Spatial and temporal variation in larval drift was seen. 2012 saw low levels of larval drift compared to 2011 and 2013. But overall the high larval density observed (mean of 20 larvae per ML during peak week of drifting period) suggests this reach may play an important role for natural recruitment of cod into the Murrumbidgee River system. Size and age profile of potential recruits was examined. Relationships between observed larval cod drift, and seasonal and river conditions was considered but no significant associations were seen. The distance Maccullochella larvae drift from the nest before settling remains a knowledge gap and specific patterns of larval cod drift in upland river systems may have implications for management of the two sympatric Maccullochella species (M. peelii and M. macquariensis) in this river.

Functional responses to environmental flows: linking benthic metabolism and dissolved organic carbon in the Snowy River

Ann-Marie Rohlf, 1 Simon Mitrovic, 1 Simon Williams, 1 Gavin Rees, 2 Richard Lim 1

1. University of Technology Sydney, Broadway, NSW, Australia
2. NSW Office of Water, Wollongong, NSW, Australia

Controlled floods from storage reservoirs are often used in the rehabilitation and restoration of regulated rivers. These events may influence ecosystem functioning by altering basal resource availability. One such resource is dissolved organic carbon (DOC), a major energy source for the heterotrophic micro-organisms that often form the base of the food web. Controlled floods in the Snowy River deliver a reduced DOC concentration pulse relative to natural high-flow events. This study examined the responses to the DOC signal from three experimental floods in the Snowy River below Jindabyne Dam. We expected epilithic biofilm respiration and benthic extracellular enzyme activity rates to increase concomitant with a DOC concentration pulse during each event. tiles colonised with epilithic biofilm were exposed to real time changes in stream DOC concentrations by incubating in sealed chambers to determine metabolic rates. Enzyme activity rates in benthic sediments were measured throughout each event. Preliminary results show a minor increase in DOC concentration accompanied by an approximately twofold increase in biofilm respiration rate during two of three floods. The activity rates of some extracellular enzymes increased relative to pre-release conditions, but specific enzymes showed an inconsistent response between events. These results suggest that even a small DOC signal from controlled floods can influence benthic metabolism, and may therefore affect broader ecosystem functioning such as whole stream metabolism and carbon cycling.

Defining ecosystem processes for rehabilitation of Ranger uranium mine (NT)

Amy George, 1 Renee Bartolo, 1 Andrew Harford, 1 Chris Humphrey 1

1. Dept of the Environment, Supervising Scientist Division, Darwin, NT, Australia

The Environmental Requirements for closure of Ranger uranium mine stipulate that the mine site and associated waterbodies must be rehabilitated to a state which allows them to be incorporated into the surrounding World Heritage, and Ramsar-listed Kakadu National Park. Rehabilitation of ecosystem processes is specifically identified in these requirements. Identification of key ecological processes is important in developing Ecological Character Descriptions (ECD) for Ramsar sites. However, the mapping of key processes to the biological and ecological measurements commonly used in monitoring programs is a step often ignored or given little attention. The current ECD for Kakadu identifies only two non-biological critical processes: fluvial hydrology and fire regime. A number of non-critical supporting processes are further identified with ecosystem processes being listed as a supporting process. However, the ECD does not explicitly link these processes with quantifiable processes typically applied within Ramsar wetland monitoring programs. As part of an ecological risk assessment being conducted for Ranger, ecological processes are being linked with response variables measured as part of the on-going monitoring program at Ranger. Processes have been developed for multiple spatial and temporal scales to evaluate synergies between measurement variables and ecological processes within aquatic ecosystems. The results identify the need for processes to be considered within a seasonal context, particularly where seasonal variation is very high, as in the wet/dry tropics.

Riparian zones in flat sandy systems, are they up to scratch?

Peter O’Toole 1

1. Murdoch University, Murdoch, WA, Australia

The riparian zone paradigm suggests that vegetation along perennial streams on sloped sites with good soils improves water quality and aquatic biodiversity. In the Ellen Brook catchment in Western Australia, riparian vegetation on linear channels and braided channels (high DOC) intermittent streams. While poor soils, lack of slope and surface flow limits nutrient removal capacity in these flat, sandy systems, this study has previously shown that riparian vegetation improves soil condition, nutrient uptake and storage. But what other benefits does riparian vegetation provide, particularly for intermittent streams? A survey of in-stream macroinvertebrate communities across vegetated and unvegetated stretches of intermittent and perennial streams was undertaken. Results indicated that flow regime, colour (DOC) and whether stream segments were vegetated had a comparable effect. Global R = 0.4, P < 0.001). However, pairwise comparisons showed that flow regime (R= 0.513, P < 0.001) had a stronger influence than stream colour (R= 0.283, P < 0.001). The presence of riparian vegetation had the largest effect in perennial streams (R= 0.537, P < 0.001). In intermittent streams, flow regime was the driving factor and not riparian vegetation, possibly due to degradation of riparian vegetation at these sites. The results from this study question the fundamentals of the riparian vegetation paradigm, particularly in relation to the functionality of riparian vegetation in nutrient reduction and its contribution to stream invertebrate diversity in sandy intermittent streams.

Benthic algal resilience to frequent wet season disturbances by storm flows in low order streams in the Daly River, tropical Australia

Simon Townsend 1

1. Charles Darwin University, Darwin, NT, Australia

Disturbance by storm flows and floods can shape lotic ecosystems. During the 3 month wet season of the Australian wet-dry tropics, storm flow disturbances are frequent. Benthic algal resistance and resilience in open canopy streams in the Daly River catchment are investigated. The following hypotheses were tested: (1) storm flow will dislodge benthic algal biomass; (2) base flow biomass will be lost; (3) epilithic algal composition will be dominated by either resistant algae with a prostrate and/or erect growth forms, or fast growing colonizing algae. Storm flows dislodged approximately 93% of epilithic biomass, supporting the first hypothesis. Benthic biomass was typically of temperate oligotrophic streams, though maximum biomasses were more typical of mesotrophic streams. The second hypothesis is not supported unequivocally. The relatively rapid growth and high biomasses are attributed to the warm water temperatures, as well as high incident light, rapid algal nutrient uptake, and grazing pressure constrained by the loss of invertebrates caused by storm flows and physical impediments to fish access. Sample taxon richness averaged 34, higher than expected and not supporting the third hypothesis due to the occurrence of rare taxa. Nor was the fourth hypothesis supported, as epilithic algal biomass was dominated by resistant filamentous algae. Epilithic algae demonstrated a similar resistance to storm flow disturbances compared to higher latitude streams, but a greater level of resilience, and could potentially supply an autochthonous source of carbon to the Daly River.

Can Top-Down Consumer Effects Be “Scaled-up”?

Erica A Garcia, 1 Katherine S Locken, 1 Damien McMaster, 1 Michael M Douglas 1

1. Charles Darwin University, Darwin, NT, Australia

The strength of top-down (consumer) control in stream ecosystems is known to vary across temporal and spatial scales. Although little is known about whether measurements at the small scale can be “scaled-up” to describe what is occurring at the catchment level or larger spatial scales. Here we conducted a 40 day consumer manipulation experiment (i.e. fish and shrimp removal) to test top-down consumer effects and in-stream processes within three streams in the wet/dry tropics of northern Australia. Changes in benthic algal biomass as well as macroinvertebrate abundance and community were measured at the patch scale within small 1m² exclusion cages and at the reach scale within whole-reach exclusions (~20m). At the reach scale strong top-down consumer effects were observed, with evidence of a trophic cascade. Here the removal of consumers resulted in a significant increase in macroinvertebrate abundance and a significant decrease in benthic algae biomass. However at the patch scale, there was no evidence of top-down effects, with no significant difference in macroinvertebrate abundance or benthic algae biomass between treatment groups. Our findings highlight the difficulty in ‘scaling-up’ top down control results. This is particularly important for river health monitoring which is typically challenged by the need to “scale-up” from site level measurements to the whole river system which is frequently the target of management actions, as many of the human induced pressures on our riverine environments occur at large scales.
Phosphorus limits seston and periphyton production in iron-rich dryland streams?
Jordan Ailes1, Pauline Grierson2, Neil Pettit2

1. University of Western Australia, Crawley, Perth, WA, Australia
2. Ecosystems Research Group and Australian Biogeochemistry Centre, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia

Multi-scale comparison of stream metabolism within the wet/dry tropics
Erica A García1, Damien McMaster3, Katherine L Lacksen1, Michael M Douglas1

1. Charles Darwin University, Darwin, NT, Australia
2. Charles Darwin University, Darwin, NT, Australia
3. University of New South Wales, Sydney, Australia

Science or citizen science? Which will save the Oblong turtle?
Caitlin Bartholomew1, Jane M Chambers2, Catherine Baudains3, Mirela Tulbare2

1. Murdoch University, Murdoch, WA, Australia
2. University of New South Wales, Sydney, Australia

DNA Barcoding and Ecological Studies: Finding Large Hidden Genetic Variation
Ros St Clair1

1. EPA Victoria, Macleod, VIC, Australia

Fish spawning in the tropics - are low flows important?
Cathy Dodge1, Alison King1, Duncan Buckle1

1. Charles Darwin University, Darwin, NT, Australia

Rivers of northern Australia contain a high diversity of freshwater fishes, which are ecologically, socially and culturally important. Little information is currently known on their basic early life history requirements, particularly spawning times, nursery habitat and societal requirements of young. In addition, there are a variety of anthropogenic changes (e.g. water extraction, river regulation, land use change, population expansion and climate change) posing imminent threats. At this critical time, we investigated the spatial and temporal variability of freshwater fish spawning during the dry season low flow period in the Daly River, and what specific nursery habitats are being used for breeding during this period. Sampling of fish early life stages occurred at 6-weekly intervals (May-October), in three river reaches of the Daly River. A suite of standardised methods was trialled, with Sweep Net Electrofishing and light traps being most effective, and drift and nets yielding very small numbers. Spawning occurred throughout the dry season, with peak abundance occurring for some species towards the end of the dry season, leading into the resource rich wet season. A total of 14 species were collected as larvae and 24 as juveniles. Strong diel variation was also evident, with higher larval abundances at night. The majority of larval and juvenile fish were collected in littoral habitats (of varying characteristics) and not collected in the main channel.

This study forms part of a larger on-going project that will contribute towards an understanding of spawning and recruitment requirements of fishes in the Daly River.
Oral abstracts

Examination of sampling processing methods for macroinvertebrate community monitoring in tropical shallow billabongs

Linda Chandler1, Christopher Humphrey1, Amy George1
1. Supervising Scientist Division, Darwin, NT, Australia

Alocentric macroinvertebrate communities are routinely monitored around the Ranger uranium mine in the NT to assess if any changes in the biotic structure can be linked to the effects of mine site runoff. The Supervising Scientist Division has linked macroinvertebrate communities in shallow billabongs (artificial or natural billabongs) intermittently, in 5 years since 1995. In each of the thirteen billabongs studied, samples were collected from littoral macrophyte habitats at five locations. In 1995, 1996 and 2011, the samples were processed using only live sorting methods, with limited follow-up laboratory sampling processing conducted in 1996. To date, constraints associated with field sample processing, the processing method was changed in 2011. The data set was used to compare and to create a field sample processing quality assurance quality control assessment.

Do recolonization processes in intermittent streams have sustained effects on benthic algal density and assemblage composition?

Beltiha J Robson1, Edwin T Chester1
1. Murdoch University, Murdoch, WA, Australia

Previous research showed that even intermittent streams flow, benthic algae develop from both colonizing propagules and regrowing dried biofilm, but the duration of these effects is unknown. In 2008, Robson and colleagues published a model of recolonization processes in intermittent streams. We now aim to determine whether these colonizing processes could influence algal densities and taxonomic composition beyond the period immediately following the onset of flow, and whether flow regulation would modify these processes. In a field experiment in the Victoria Range, Grampians National Park, Australia, stones were placed in two unregulated streams, and upstream and downstream of weirs in three regulated streams, after dry bare stones had been removed. Epilithic algae on treatment and control stones were collected after winter flows (12 weeks). Treatment effects were still apparent in one (unregulated) stream, but not in the other four streams. Algal assemblages and densities upstream and downstream of weirs differed, but there was no systematic pattern among streams. In these intermittent headwater streams, the recolonization processes may influence algal assemblage composition. The duration of these effects will be shorter, depending on assemblage composition in regrowth and refuges, which is also shaped by previous season’s conditions. The effect of regulation probably depends upon how idiosyncratic flow regimes and assemblage compositions affect recolonization. Similarly, the recovery trajectories for stream communities after drought will differ among streams, depending on whether biofilm can develop during potentially short seasonal flows.

Torres Strait Sea Country – do we really know who makes the decisions?

Stan Liu1
1. Torres Strait Regional Authority, Daintly Island, QLZ, Australia

The Torres Strait is home to Eddie Koiki Mabo who was a significant national and international figure in altering the traditional land rights landscape in Australia. The High Court delivered the decision of Mabo and others v Queensland (No.2) in 1992. The Torres Strait is home to Eddie Koiki Mabo who was a significant national and international figure in altering the traditional land rights landscape in Australia. The High Court delivered the decision of Mabo and others v Queensland (No.2) in 1992. In 1996 and 2006 all of the samples were processed using only live sorting methods, with limited follow-up laboratory sampling processing conducted in 1996. To date, constraints associated with field sample processing, the processing method was changed in 2011. The data set was used to compare and to create a field sample processing quality assurance quality control assessment.

Oral abstracts

Valuing Indigenous engagement in fisheries research

Be Cooke1
1. Department of Primary Industry and Fisheries, Bertram, Northern Territory

Indigenous Australians have extensive knowledge, experience and passion in managing natural resources. Their connection to country is being recognised by a variety of organisations, including researchers from universities, government agencies and/or non-government organisations. There is a shift towards merging both Indigenous knowledge and western knowledge to gain a better in-depth understanding of our ecosystems. This shift includes localised Indigenous ranger programs, joint research initiatives at the jurisdictional level as well as a steady push at the ‘vector’ (eg north Australian) or national levels. Indigenous engagement in ecosystem research and management is an obligated activity, it is enshrined in Indigenous culture through ceremony, stories, songs, art and law (lore). Australia needs to be proud of its Indigenous heritage and ensure it is protected, but first needs to clearly define what it is. This is best done by including Indigenous people in research and management. Benefits to engage Indigenous people in research and management initiatives are more than just about cost effectiveness and cultural and social maintenance. It’s about modelling holistic approaches in obtaining vital ecosystem based resources. We can recognise 60 000 years of research and management. This presentation will discuss the benefits of engaging Indigenous Australians in fisheries related research and management. It will provide some case studies at the local, jurisdictional, sectoral and national levels. The success of these activities has been through them being driven by a strong ‘top down’ approach used to support these initiatives.

Indigenous Voices in Water Rights - The NSW Experience

Phil Duncan1
1. NSW Aboriginal Land Council, Parramatta, NSW, Australia

In 2004 all Australian governments signed a world’s best practice blueprint for water reform – The National Water Initiative. The NWI explicitly recognises the need to identify Aboriginal water values, their water requirements and water provision for current and future native title claims. While the NWI parties have made progress in identifying all water user requirements and values, significant opportunities remain to: improve water rights, maintain water rights, and encourage greater Aboriginal leadership in water planning and management. This presentation provides an insight into how Indigenous people in NSW have engaged to build the necessary capacity to be proactively involved in water planning and management to the extent of being a key player in the water market trading. Cultural flows have now been integrated into all water sharing plans across NSW.

Are native fish populations in the Murray River energy limited?

Nick Mangles1, 6, 10, 2, 4, 8, 9, 3, 6, 7, 10, 4
1. Griffith University, Nathan, Qld
2. Murray-Darling Freshwater Research Centre, Albury, NSW
3. Department of Primary Industries, Victoria, VIC
4. Charles Darwin University, Darwin, NT
5. MOFA, Canberra, ACT
6. Charles Sturt University, Albury, NSW
7. CSIRO, Hobart, TAS
8. University of Canberra, Canberra, ACT
9. University of New South Wales, Sydney, NSW
10. Monash University, Melbourne, VIC

Native freshwater fish populations in many parts of southern and eastern Australia have undergone extensive declines since European settlement, and there is now considerable investment in trying to reverse this trend. A major focus for these efforts, both in terms of scientific research and management actions, has been directed towards addressing the impacts of habitat loss and flow alteration on opportunities for spawning, recruitment, and availability of, and access to, the necessary habitats for fishes to complete their life-cycle. Meanwhile, much less attention has been given to the impacts of altered flooding regimes on the production and carrying capacity of aquatic biota. Here we ask whether populations of high-trophic order native fish in regulated lowland rivers such as the Murray are presently limited by energy availability, either due to altered rates of production or altered energy flows, for example due to competition from introduced species. We assembled information on historical and contemporary native fish abundance and historic and present day estimates of basal energy production, and combined these data using simple food-web models. Our initial results suggest contemporary levels of invertebrate production are insufficient to support historical biomass estimates, and hence pose severe constraints on the outcomes that might be expected from traditional approaches to rehabilitating native fish populations. We discuss the implications of these results in terms of environmental flow management, and also discuss future research needs.
Oral abstracts

Knowledge of age and provenance is fundamental to understanding flow-related reproductive response, recruitment and population dynamics in freshwater fish

Brenton P Zampatti1, Sandra J Leigh1, Phillipa J Wilson3, David A Crook2

1. Inland Waters and Catchment Ecology Program, South Australian Research and Development Institute (SARDI) - Aquatic Sciences, Adelaide, South Australia
2. Research Institute for the Environment and Livelihoods (RIEL), Charles Darwin University, Darwin, Northern Territory

Restoration of flow regimes to benefit native fish populations requires an empirical understanding of relationships between hydrology, life history and population dynamics. Golden perch is one of only a few native species in the southern Murray-Darling Basin that has been consistently related to flow. Consequently, recruitment constitute a common objective of environmental water allocations. Nevertheless, to measure response, and inform expectations, an explicit understanding of when and where fish originating is fundamental. Microstructural and chemical analyses of fish otoliths provide powerful tools for determining the spatio-temporal provenance of fish. We demonstrate how these tools can be used to retrospectively elucidate the natal origin of cohorts of golden perch in the lower Murray, and to determine the spawning date and origin of juvenile fish in relation to the delivery of an environmental water allocation. Daily and annual growth increments in otolith microstructure and strontium isotope ratios indicated that golden perch larvae, young-of-year and adults in the lower River Murray were often not locally sourced, but rather, resulted from spawning that occurred over a broad period (October-January) in the Darling and potentially mid-Murray rivers. These data enable the explicit spatio-temporal association of golden perch spawning and recruitment with flow, including environmental water delivery. Ultimately, population dynamics of golden perch in the lower River Murray are driven by processes occurring at scales of 10s-100s kilometres. To achieve positive outcomes for native fish, delivery of environmental water must consider recruitment dynamics at these scales.

Multi-decadal biochronologies indicate species-specific responses to environmental change/variability in the River Murray estuary

Christopher Izzo1, Zoe Doubleday1, Steve Delean1, Thomas Barnes1, Greg Ferguson3, Oifeng Ye1, Bronwyn Gillanders3

1. Southern Seas Ecology Laboratories, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, SA
2. Ecology Evolution and Landscape Science, School of Earth & Environmental Sciences, The University of Adelaide, Adelaide, SA
3. South Australian Research and Development Institute of Aquatic Sciences, Adelaide, SA

The River Murray estuary is the largest estuarine system in Australia, supporting a diversity of fish with varying biological and ecological traits. In recent history, the estuary has undergone dramatic fluctuations in environmental conditions (e.g. the Millenium Drought). However, there is little understanding of how these environmental fluctuations have affected the fish inhabiting the system. This study assessed responses in growth to decadal environmental variation including flow in species of fish with differing ecologies: golden perch (freshwater obligate), black bream (estuarine dependent), and mulloway (estuarine opportunist). These species were used on otolith growth increments were developed for each species using a mixed modelling approach. Biochronologies, ranging 15 to 36 years and spanning a period of severe drought, showed considerable inter-annual variation in growth. Biochronologies were then correlated to a range of local and regional hydrological and atmospheric time series data at seasonal and annual temporal scales. Among species, environmental drivers of growth variation differed. River flow at the barrages near the Murray Mouth was found to be most influential in driving golden perch growth, while the growth of mulloway and black bream responded to fluctuating temperatures and local rainfall, respectively. These results suggest that generalisations about environmental influences on ecosystem function using species-specific approaches, as fish respond to environmental change dependent on the constraints of their life history strategies. These findings more broadly highlight the importance of considering the diversity of ecological groups that inhabit an ecosystem when developing conservation and management strategies.

Investigating fish growth responses to flows in temperate floodplain rivers

Zeb Tonkin1, Adrian Kitchingman1, Jarod Lyon1, Paul Moloney, Joanne Kearns1

1. Arthur Rylah Institute, Department of Environment and Primary Industries, Heidelberg, VIC, Australia

Environmental flows, which aim to reinstate or protect key aspects of a rivers natural flow regime, are now considered an essential ingredient to maintain or restore native fish populations in flow degraded rivers. Optimising the benefits of environmental water delivery for fishes is currently reliant on restoring key aspects of the natural flow regime governing population processes. Unfortunately, for many of Australia’s freshwater fish species, there is still much uncertainty surrounding many of these vital links, making environmental flow recommendations and subsequent predictions of responses difficult. Conceptually, the pathway by which flow is frequently linked to the governance of fish populations is through its influence on habitat availability, connectivity and key ecological processes affecting fish condition and growth. Fish condition and growth have been demonstrated to influence each of the key population processes governing fish populations including recruitment, survival and movement. We investigated the growth of several species of native fish under a range of flow conditions in two rivers of the southern Murray-Darling Basin. Otoliths were used to reconstruct fish growth in the Murray River and upper Darling River. Otoliths were collected from a 23 year period encompassing major drought, flood and for the Murray River, environmental water delivery. Our results are used to predict the influence of previous environmental water deliveries on fish growth and strategies to improve such deliveries to maximise any such benefits for fish.

Understanding fish behaviour and life history is critical to developing effective environmental flow regimes for native fish: a case study of Australian grayling

Wayne Koster1, David Dawson2, David Crook3

1. Department of Environment & Primary Industries/Deakin University, Heidelberg, VIC, Australia
2. Department of Environment & Primary Industries, Heidelberg, VIC, Australia
3. Charles Darwin University, Darwin, Australia

Flows provide cues for a range of critical life history behaviours in fishes such as movement and spawning. In many rivers throughout the world, however, flow regulation has resulted in the loss or disruption of these cues. The provision of environmental flows provides an important opportunity to reinstate these cues to assist fish population recovery. A major challenge of environmental flows science and management therefore is developing understanding of critical relationships between flow regimes and fish behavioural responses. The Australian grayling is a diadromous fish species that has declined considerably since European settlement. Changes to flow regimes are a major reason for the decline. Consequently, environmental flow recommendations have been developed and implemented for the species in many regulated rivers. Although such efforts may benefit Australian grayling, gaps in knowledge of flow-ecology relationships limit the development of robustly effective fish conservation and management strategies. To address this shortcoming, we investigated two critical life history behaviours of Australian grayling (movement and spawning) and relationships with flows, using larval drift sampling and acoustic telemetry. In particular, the study tested whether Australian grayling migrate to specific areas to spawn, and whether these behaviours are influenced by flow. The study found that Australi- an grayling migrate large distances downstream to spawn coinciding with increased river flows. The study demonstrates the need to understand fish behaviour and life history to develop appropriate flow regimes for fish in regulated rivers. Importantly, this information is now being used by river managers to refine existing environmental flow recommendations for the species.

Seed banks on semi-arid floodplains in the northern Murray Darling Basin: Skippy is doing his bit

Dean Thorburn1, Julie Crawford3

1. Indo-Pacific Environmental, Mount Hawthorn, Western Australia, Australia
2. Environment Department, McArthur River Mine, Winnellie, Northern Territory, Australia

Seed banks play a vital role in maintaining plant diversity, especially in highly unpredictable environments such as arid and semi-arid floodplains. In such systems floods and droughts tend to be extreme and periods between floods tend to be severe and arid. A significant ecological filter that will determine the overall vegetation structure in these hydrologically unpredictable floodplain plant communities would be the “regeneration niche” which would include the various life history strategies that plants will have to enable them to recruit periodically when conditions are favourable such as significant and persistent seed scarcity. In semi-arid floodplain systems these seed banks are often within the soil profile but can also be held in above-ground litter, including animal (e.g. kangaroo) scats. In order to examine the germinable seed abundance, and thus the potential seed banks across different hydrological settings we collected soil, litter and animal scat samples from 28 floodplain sites across the semi-arid northern Murray Darling Basin. Samples were subsequently re-wetted and kept moist, with germination recorded. The results of the first four months of this regeneration experiment are presented and interpreted in relation to background environmental settings, including density of ground-cover and hydrological history. All three potential seed-banks supported a diverse array of plants including, grasses, sedges, forbs, herbs and woody plants, including coolibah (Eucalyptus coolabah), river cooba (Acacia stenophylla) and weeping myall (Acacia pendula). In terms of species richness, litter tended to have a higher numbers of species, followed by soil, then scats (which were predominantly grasses and forbs).

Responding to McArthur River flows: How environmental flows are driving an adaptive management program for sustainability of aquatic fauna

Stephen R Balcombe1, Samantha J Capon1

1. Griffith University, Nathan, QLD, Australia

Seed banks play a vital role in maintaining plant diversity, especially in highly unpredictable environments such as arid and semi-arid floodplains. In such systems floods and droughts tend to be extreme and periods between floods tend to be severe and arid. A significant ecological filter that will determine the overall vegetation structure in these hydrologically unpredictable floodplain plant communities would be the “regeneration niche” which would include the various life history strategies that plants will have to enable them to recruit periodically when conditions are favourable such as significant and persistent seed scarcity. In semi-arid floodplain systems these seed banks are often within the soil profile but can also be held in above-ground litter, including animal (e.g. kangaroo) scats. In order to examine the germinable seed abundance, and thus the potential seed banks across different hydrological settings we collected soil, litter and animal scat samples from 28 floodplain sites across the semi-arid northern Murray Darling Basin. Samples were subsequently re-wetted and kept moist, with germination recorded. The results of the first four months of this regeneration experiment are presented and interpreted in relation to background environmental settings, including density of ground-cover and hydrological history. All three potential seed-banks supported a diverse array of plants including, grasses, sedges, forbs, herbs and woody plants, including coolibah (Eucalyptus coolabah), river cooba (Acacia stenophylla) and weeping myall (Acacia pendula). In terms of species richness, litter tended to have a higher numbers of species, followed by soil, then scats (which were predominantly grasses and forbs).
Oral abstracts

Soil seedbanks in a restoring floodplain wetland

Samantha Dawson1, Richard Kingsford1, Peter Berney1, Jane Cadford1,2

1. Australian Wetlands1, Rivers and Landscapes Centre, University of New South Wales, Sydney, NSW, Australia
2. NSW National Parks and Wildlife Services, Sydney, Australia

Oral abstracts

The influence of urbanisation on waterbird invertebrate biodiversity

Teresa J Mackintosh1, Ross Thompson2, Jenny Davis2

1. School of Biological Sciences, Monash University, Clayton, VIC, Australia
2. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia

Oral abstracts

Wetland Management in an Agricultural Landscape

Nicky Bruce1, Sarah Ning2, Patricia Bowen3, Rhonda Sinclair1, Deb Nair2

1. NSW National Parks and Wildlife Services, Sydney, Australia
2. Murray Darling Wetlands Working Group Ltd, EAST AUBURN, NSW, Australia
3. Ecological Consultant, Alice Springs, NT, Australia

Oral abstracts

Is Salinity the Key Driver of Fish Species Assemblage in Finke River Waterholes?

Sarah Ning1,2, Samuel Argus1, Rupert Mathwin1, Simon Townsend4, Dale McNeil1,2, David Schares1,2, Pat Hodgetts2, Jed MacDonald2, Simon Townsend4, Dale McNeil1,2, David Schares1,2

1. Northern Territory Government, Alice Springs, NT, Australia
2. Inland Waters, SARCE, Adelaide, SA, Australia
3. Ecological Consultant, Alice Springs, NT, Australia
4. Ecological Consultant, Melbourne, Victoria, Australia
5. Museums and Art Galleries of the Northern Territory, Darwin, NT, Australia

Oral abstracts

How efficient is wetland vegetation at trapping suspended sediment and bedload on Magela Creek in Northern Australia?

Wayne Eckridge1,2, Michael Raynor1, Kate Tumey1, Timothy Whiteside1, Kenneth Evans3

1. Hydrological Geomorphological and Chemical Processes Group, Environmental Research Institute of the Supervising Scientist, Darwin, NT, Australia
2. School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
3. School of Engineering & Land Resources, Charles Darwin University, Darwin, NT

Oral abstracts

Ramsar-listed wetland. Portions of the area experienced 12 different land use disturbances: ringbarked 1950s, cleared 1982, cleared 1997-2008, cropped 2002-2003 and 2006, bulldozed and ploughed 2003, cropped 1995-2008, cropped 1997-2008, cropped 2002&2004&2006, cropped 2003, cropped 2005-2007, cropped 2006. Levee banks reduced flooding across the study area throughout this period. After the land was purchased in 2009, levee banks were breached to facilitate natural regeneration by enabling passage of environmental and managed flows. Several years of flooding led to variable restoration success. This project examined whether restoration success was associated with soil seedbank composition or germination success. Within each of the 12 land use types, we sampled the soil seedbank from nine random sites, three in shallow distributary channels, three immediately adjacent to channels (riparian) and three 50-100m from channels on the floodplain (n=108). The soil samples were germinated under damp, saturated and flooded conditions in greenhouses for 12 weeks, with continual seedling identification and removal. Results suggest that both dispersal constraints (seedbank composition) and germination conditions affect the diversity, abundance and composition of vegetation germinating and reflect the varying disturbance types and flooding frequencies.

South lake: I know what you did last summer!

Suzanne Strachan1, Edwin T Chester2, Belinda Robinson2

1. Murdoch University, Murdoch, WA, Australia

Loss of water challenges aquatic animal survival, and although it happens annually in seasonal wetlands, its effect on faunal dynamics is poorly understood. We studied these dynamics in detail in a single wetland, South Lake. The aims of these experiments are to quantify variation in species richness across different hydroperiods and invertebrate response. Although located in sub-tropical urban Perth it is relatively undisturbed, drying to a pool before completely drying out during summer. We have sampled South Lake over multiple years and hydroperiods, including the dry phase. Temperature loggers were placed in and around South Lake, leaving the water temperature and sediment temperature throughout multiple hydroperiods, showing some extreme high temperatures in summer. During spring, invertebrate diversity was very high. As the water level declined, and then dried out, diversity declined and large invertebrates disappeared. Prior to sampling we forecasted that 50% of the invertebrates would be lost. Before water surface completely disappeared (in 2002 and 2006) the water was heavily turbid with peat-like sediments and the pH was extremely acidic. Water quality then improved and invertebrates reappeared in the shallows in two years and in the bed in three years. Where dry periods were long, invertebrates were unable to return, dying. Bacterial degradation of sediment caused elevated salinity. In 2004 high peaks of pH and salinity likely reduced the pool volume and tied up nutrient inputs (i.e. most aquatic plant reproduction was lost). Bacterial degradation of sediment also caused blue-green algae blooms. The pool was then drained and reflooding was delayed by the time an invertebrate reassemblage had occurred. A complete invertebrate reassembly was not possible and the invertebrates are long dependent on the restoration of intermodal interactions that integrate their farming activities and biodiversity and carbon storage interests. We expected to experience some hesitation towards the project from landholders due to the strong agricultural focus of the area, however, the targeted landholders had a strong desire to participate and have increased their understanding of wetland management. The project will continue to engage with these motivated landholders through the project’s Wetland Champions program, which will see them promoting future project investment rounds and the values of wetlands to their networks. The approach used to deliver this project is hoped to provide improved security of investment, reduced risk of future wetland management mismanagement and increased engagement in appropriate natural resource management in the future for participants and their peers.

The influence of urbanisation on invertebrate biodiversity

Teresa J Mackintosh1, Ross Thompson2, Jenny Davis2

1. School of Biological Sciences, Monash University, Clayton, VIC, Australia
2. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia

The construction of a road grid in the urban environment is primarily carried out to assist in the removal of contaminants from wastewaters, however they have the added benefit of providing habitat for wildlife. Nonetheless, stormwater can be a threat to aquatic environments as the quantity and quality of stormwater decreases as impervious area (roads, sealed areas, roofs) increases. Total Inflow Inflow (TII) is the measure used to quantify the amount of catchment impermeability associated with urbanisation. This study aims to establish whether the degree of urbanisation and its associated change in stormwater runoff affects macronyriobranch species richness and abundance within constructed wetlands. Urban wetlands in Melbourne’s west and south east were sampled along a gradient of urbanisation. There was a significant inverse relationship between measures of the abundance of macroinvertebrates detected. Chironomidae (non-biting midges), was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. As such, they are often the dominant taxa in urban wetland systems. It is likely that the decrease in water quality associated with increasing amounts of stormwater runoff was detrimental to the invertebrates within these wetland systems. It is important to understand the impacts of urbanisation on aquatic biota to ensure that urban wetlands can be designed and managed to continue to provide important habitat for wildlife.
Oral abstracts

Habitat requirements for aestivation of Galaxiella nigrostriata during the dry phase of seasonal wetlands.

Dave Gallocci1, Mark Lund1, Clint McCulloch1
1. Edith Cowan University, JOONDALUP, WA, Australia

Galaxiella nigrostriata is a freshwater fish endemic to seasonal wetlands of south-west Western Australia. Galaxiella nigrostriata are intriguing because they aestivate in the wetland sediments when the wetlands dry over summer. Nevertheless, with a drying climate forecast and increasing pressures on groundwater resources that will extend dry phases of seasonal wetlands, this unusual species faces an unknown future. This study examined the summer (dry) habitat requirements of a remnant population of G. nigrostriata within a complex of twelve seasonal wetlands near Bunbury. Two wetlands, that had the highest population densities the previous year, were chosen to investigate whether crayfish burrows were used to access wet sediment (wet from groundwater) when the wetlands dried over summer. Secondary aims were to investigate whether G. nigrostriata followed the water to the lowest point as it dried before they entered the sediments, and if the presence of vegetation affected where they aestivated. Thirty one lentycorals, a shallow water adaptation of Limnocorals, were constructed in two dry wetlands prior to the onset of winter rains to capture G. nigrostriata as they emerged when the wetlands began to inundate. One wetland did not produce any G. nigrostriata in the lentycorals or elsewhere within the wetland. However, the other containing 15 lentycorals produced some interesting results. Galaxiella nigrostriata did not necessarily require crayfish burrows to enter the sediments, they waited until the wetlands were nearly dry before entering the sediment and did so near vegetation. The implications for conservation and wetland rehabilitation will be discussed.

Potential impacts of water temperature on fish habitat in riverine watersheds in northern Australia

Jim Wall1, Nathan Waltham
1. TROPWATER, JCU, Townsville, QLD, Australia

In northern Australia in channel watersheds in ephemeral rivers provide vital habitat for the survival of fish during the dry season. Many aspects of the water quality of these watersheds can affect habitat suitability, but water temperature is arguably the single most important parameter, since it directly affects the rates of many important physical, chemical and biological processes. In channel waterhole temperature was monitored at a number of locations in the Flinders and Gilbert catchments as the dry season evolved in 2012-13. These data were used to derive frequency curves that show how often water temperature exceeded any given temperature threshold. To explore how often waterhole temperature may become detrimental to fish, the exceedance times for preliminary thresholds for optimum growth and lethal effects are presented. How these exceedance times increase for fish species in the tropics, as they have lower temperature tolerance compared to species in the south, will also be discussed. The implications for conservation and water quality management will be discussed.

Resistance of two fishes with contrasting lifestyles to hypoxia: Links between metabolic and behavioural traits

Simon Mom1, Rick Stoffels2, Kyle Weatherman3, Peter Pridmore4
1. Environmental Management and Ecology, La Trobe University, Wodonga, Victoria, Australia
2. CSIRO Land and Water, The Murray Darling Freshwater Research Centre, Wodonga, Victoria, Australia
3. La Trobe University, The Murray Darling Freshwater Research Centre, Wodonga, Victoria, Australia
4. Environmental Management and Ecology, La Trobe University, Wodonga, Victoria, Australia

The frequency and magnitude of droughts are forecast to increase throughout southern Australia, which implies our freshwater fish species will potentially face more frequent and severe episodes of hypoxia in the future. Unfortunately, however, we have a poor understanding of the resistance and resilience of our fish species to hypoxia. More generally, there appear to be few generalisations or ‘laws’ of fish community change in response to hypoxia; laws that ecologists and managers can utilise to forecast effects on biodiversity. Community ecologists have suggested that experimental work linking animal physiologial traits to fitness along environmental gradients may yield more useful, functional-trait based laws of community change. Here we tested the hypothesis that fish ‘lifestyle’ is linked to metabolic rate, which in turn drives resistance, and behavioural response, to hypoxia. Metabolic rates of a ‘fast’ pelagic species, unspoked hardyhead, were significantly higher than those of a ‘slow’ benthopelagic ambush predator, flathead gudgeon. In turn, physiological sensitivity to hypoxia (as indicated by critical oxygen tension) was lower in hardyhead than in flathead gudgeon. Behavioural responses to gradual hypoxia also demonstrated that the onset of avoidance to hypoxia occurred earlier in hardyhead than in flathead gudgeon. These results, combined with others, imply interesting links between fish lifestyle and resistance to hypoxia.

Effect of salinity on the ecosystem function, leaf decomposition: dryland salinity vs. salinity from a coal mine.

Felix Saure1, Mirco Bundschuh1, Ben Kefford2
1. Institute for Environmental Sciences, University of Koblenz-Landau, 78829 Landau, Germany
2. Institute of Applied Ecology, University of Canberra, ACT, Australia
3. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden

The decomposition of allolchothroph organic matter (AOM) is a critical ecosystem function in streams and supplies resources to stream organisms originally produced through terrestrial photosynthesis. Stressors like salinity can impede the AOM breakdown, thus potentially increasing terrestrial inputs to streams. In our study we measured the amount of AOM produced in four different streams in northern Australia in order to determine how to best utilise AOM breakdown as an indicator of terrestrial inputs to streams. We found that AOM breakdown was lower in streams with higher salinities. We also found that the AOM breakdown was lower in streams with higher salinities and that the AOM breakdown was higher in streams with lower salinities. We also found that the AOM breakdown was higher in streams with lower salinities and that the AOM breakdown was lower in streams with higher salinities.

Water quality fish passage barriers caused by aquatic weed infestation and black water flow events on a tropical floodplain impacted by irrigated agriculture

Jim Tai1, Vern Veitch2, Damien Burrows3
1. ecconcern, WANGANUI, NSW, Australia
2. Townsville City Council, Townsville, QLD
3. TROPWATER, James Cook University, Townsville, QLD

The potential impacts of irrigation development on tropical Australian floodplains and fish communities is an issue of current interest considering proposals to further develop water resources in northern Australia. Studies examining risks associated with further water development (such as the lowering of water levels in order to increase irrigation potential) have focused primarily on Australia’s undeveloped northern river basins. However, many of these river systems are already impacted from the development of irrigation and the use of irrigation water, which may be a potential threat to the survival of fish species. In this study we investigate the effects of irrigation development on tropical Australian floodplains and fish communities.

Burnett River riparian stabilisation – practical examples of reducing sediment loads to the Great Barrier Reef

Andrew Simon1,2
1. Burnett Mary Regional Group, Bundaberg, QLD, Australia
2. Cardno Enviol, Portland, USA

The Burnett River experienced severe flooding in early 2011 and 2013, with the latter flooding breaking historical records. Bank erosion on floodplains in the Burnett River was severe, and in some areas considerable damage to ecological assets, such as the riparian zone, resulted. The Burnett Mary Regional Group (BMRG) commissioned Cardno ENVIROS to determine the flow recovery strategies to protect riparian assets and assess the relative contributions of bank sediment, particularly fine-grained material, to material sediment loads entering the Burnett River. BMRG identified potential sediment sources from the Burnett River and implications for sediment export to the Great Barrier Reef. The BMRG identified potential sediment sources from the Burnett River and implications for sediment export to the Great Barrier Reef. The Burnett River was identified as a potential sediment source to the Great Barrier Reef. The BMRG identified potential sediment sources from the Burnett River and implications for sediment export to the Great Barrier Reef.

Channel bank stability (or lack of), the implications and rehabilitation options for the Mid Brisbane River

Morgan Stewart1, Joe McMahon2, Jon Olley2, Justine Kemp3, Nina Saxton2, Kate Smolders1
1. Seawater, Ipswich, QLD, Australia
2. Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia

Channel bank erosion is the dominant source of sediment in southeast Queensland waterways, and can increase with increased hydraulic force or when bank stability (stability) decreases. Increased sediment loads can have detrimental effects on the downstream environment, and quality and quantity of potable water. Significant erosion of the Mid Brisbane River was observed during the 2011 and 2013 flood events, and became an issue for landholders, Seqwater and other Mid Brisbane stakeholders. This study aimed to identify and quantify the main types of erosion present, the erosion processes and rehabilitation options for the Mid Brisbane River following the flood events. Using on-ground rapid visual assessments and repeat LIDAR analyses, the main types of erosion were identified as a large number (168) of wet flow failures and a small number of large fluvial scour failures, which accounted for 237,000 m3 and 330,000 m3 of sediment volume change, respectively. Historical evidence shows the main catchment disturbances in the Mid Brisbane since European arrival are riparian vegetation clearing, alteration of flow regime and gravel extraction. Modelling indicates that the probability of fluvial erosion and wet-flow failures occurring could have been decreased through vegetation to stabilise the bank toe and increase the cohesive strength of the soil, respectively. Our study shows that for the Mid Brisbane River, more than 90% does not require major engineering works to stabilise the channel banks and re-establishing dense riparian vegetation would decrease the probability of channel bank erosion and therefore, reducing sediment loads and improving water quality.

A Case Study for Measuring Outcomes from Large Management Interventions on Fishes: The Murray River Resnagging Experiment

Jarod Lyon1, Joanne Kearns1, Tom Bird1, Simon Nicol1, Zeb Tonkin1
1. Arthur Rylah Institute, DEPI, MEIDELBERG, VIC, Australia

In the field of restoration ecology, understanding, and indeed measuring, links between management interventions and target environmental outcomes is at best challenging. For aquatic systems, fish are often used to justify investment in restoration, such as environmental wetting, invasive species control, or habitat rehabilitation. However measuring the drivers of change in inherently complex systems, following management interventions, at population scale, is problematic. Here we provide an example of a well designed, long term experiment, measuring population scale response of fish to a large scale intervention. Between 2005 and 2008, 4500 pieces of structural woody habitat (SWH) were restored in a reach of the Murray River, and a 7 year monitoring program implemented. We hypothesised that the size of the fish population in this study reach would increase in comparison to reference reaches, through increases in immigration and survival, and decreases in emigration. In particular, while previous programs have shown that native fish use re-introduced SWH, there have been few studies undertaken which show this is directly related to an increase in population size, rather than a redistribution of fish already present (a ‘honeypot’ effect). Our presentation will discuss final results of this seven year experiment, and show a significant increase in population size for Murray cod following the intervention. We present a multiple lines of evidence approach to define fish population change in response to the management intervention. The monitoring approach used here can be applied to monitor outcomes of many management interventions, including provision of environmental water or fish stocking.

Strengthening science to policy outcomes for waterways protection at a local level in the Kimberley, WA

Amber J Briggs1, Rob Cossart1
1. Department of Water (WA state Government), Kununurra, WA, Australia

The “science to policy” pathway has received increasing attention in recent years, however there are still gaps in ensuring the process results in land use management outcomes on the ground. The two stages in the pathway (science then policy incorporation) has often been highlighted as a key issue. This case study focuses on the Ord river system, a modified, Ramsar listed wetland that provides a significant water supply for irrigated agriculture in the East Kimberley, WA. The limited scientific knowledge available for assessing environmental impacts of foreshore development meant that this task and the proposed strategies for overcoming them. Some of the major challenges include: 1) Scale – the Basin Plan environmental objectives are set at a Basin scale over a ten year time-frame, while environmental watering occur in river reaches or individual wetlands over periods of weeks to months; and 2) Ability to quantify the contribution of Commonwealth environmental water - although the CERW has a large volume of environmental water to allocate, within the context of climate variability and the influence of other stressors, at a Basin scale the signal to noise ratio may be quite small. While these challenges are significant, the CERW’s Long-Term Intervention Monitoring Project represents a significant opportunity to develop and implement effective evaluation, thereby contributing to the effectiveness of adaptive management.

Research into the efficacy of fish screens in the Murrumbidgee to Googong water transfer scheme

Rhian Clew1, Ben Broadhurst1, Mark Lintermans1
1. Institute for Applied Ecology, University of Canberra, Canberra

The Murrumbidgee to Googong water transfer pipeline had the potential to transfer larval fish and eggs from the Murrumbidgee River into Burra Creek and then ultimately Googong Reservoir. It also had the potential to locally impact larval fish (primarily cod species) in the Murrumbidgee River through impingement of fish and eggs on exclusion screens placed around each pump intake. The aim of this project was to determine the efficacy of fish screens to exclude fish and eggs from being transferred between catchments, and to determine the incidence of fish impingement on exclusion screens. Larval drift nets were set three sampling sites (Murrumbidgee River upstream of transfer intake, screen flushing outlet and Burra Creek pipeline outlet) in early December 2013. Larval fish were detected at the screen flushing outlet, indicating that fish had been impinged. No fish were detected at the Burra Creek pipeline outlet, indicating that the screens were effective at preventing cross catchment transfer at the level of pumped assessment.

Vulnerability of Western Australian fishes to changing flow

Stephen Beatty1, David Morgan1, Mark Allen1, James Keleher1, Jeff Whitty1, Alan Lynam1
1. Murdoch University, Murdoch, WA, Australia

Western Australia contains three ichthyological provinces, each with relatively high proportions of endemic fishes and widely different climatic. We discuss long-term studies that examine the life-cycles of fishes, their habitat use and environmental variables that determine how they could be impacted by ongoing flow and/or groundwater declines. South-western Australia is an unfortunate global ‘pinch’ of rainfall and flow reductions due to climate change; dramatic reductions in river flow has occurred since the 1970s; with universal agreement that this drying trend will continue. The south of the State is seeing considerable range reductions and localised population declines of fishes. Hydrological change is likely to continue to both directly and indirectly impact freshwater fishes occurrence, many of which are threatened. We demonstrate that the species that spawning migrations of potamomous fishes will decline with ongoing flow reductions. Variation in the wet season in the Kimberley region has considerable implications for fishes. A prime example relates to the level of recruitment of a threatened catadromous elasmobranch, with pressures to extract water from the region’s large rivers potentially exacerbating a reduction in recruitment. The thirst for water resources is expanding in the Pilbara, an area where surface water is scarce and where groundwater is a potential resource of potable and industrial water. Implications of groundwater extraction for the desert fishes which rely on it for survival are highlighted. The hydro-ecological relationships we discuss illustrate the vulnerability of freshwater fishes throughout Western Australia to altered flow regimes which are crucial to consider in water resource development.
Oral abstracts

Shock, stress or signal? Implications of freshwater flows for a top-level estuarine predator

Matt D. Taylor1, Dylan E. van der Meulen2, Matthew C. Ives3, Chris T. Walsh5, Ivars V. Reinfelds5, Charles A. Gray5

1. Fisheries NSW, NSW Department of Primary Industries, Taree, NSW, Australia
2. Fisheries NSW, NSW Department of Primary Industries, Batemans Bay, NSW, Australia
3. University of Florida, Florida, USA
4. Charles Sturt University, Albury, NSW
5. Griffith University, Brisbane, QLD

Understanding the influence of flow on spawning and recruitment in freshwater fishes: importance of life history, antecedent conditions and long-term data sets

Allison King1, Leah Beesley2, Dan Gwinn3, Paul Hampshire1, Mark Kennard1, Brad Pusey2, Brenton Zampatti2

1. Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
2. University of Western Australia, Perth, WA
3. University of Florida, Florida, USA
4. Charles Sturt University, Albury, NSW
5. Griffith University, Brisbane, QLD
6. South Australian Research and Development Institute, Adelaide, SA

Working together for ecosystem health in Darwin harbour

Robyn Henderson1, Anna Belford2, Aleana Talbot2, Jade Murphy3, Carol Palmer2, Simon Townsend2

1. Northern Territory Government Department of Land Resource Management, Darwin, NT, Australia
2. Larrika Nation Aboriginal Corporation, Darwin, NT
3. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

Participation of Aboriginal communities in wetland management in the Natural Resources SA Murray-Darling Basin region

Irene Wegener1, Kate Mason2

1. Natural Resources SA Murray-Darling Basin (DEWNR), Berri, SA, Australia
2. Engagement of local Aboriginal communities in wetland management and conservation is a key objective of the Natural Resources SA Murray-Darling Basin (NRM SAMBD) wetland and floodplain program. The program actively engages a number of Ngarrindjeri Communities within the SA MDB region, Aboriginal Learning on Country (ALOC) Teams and Organisations (e.g. Ngarrindjeri Regional Authority), through the NIR SAMBD Community Partnerships program, in a range of wetland and floodplain management, monitoring and on-ground activities. In the last two years, particular progress has been made in regard to the development of wetland management plans, that incorporate both sound scientific and technical advice regarding the hydrological management of a particular wetland, while also incorporating the knowledge of Elders, language and spiritual ties (e.g. Dreamtime) into a management document. In the last 12 months, several ALOC teams, and the Munamun Aboriginal Community Incorporated have been actively involved in, monitoring and on-ground works. The teams have become proficient in standard monitoring techniques for example the use of 'The Living Murray' tree health assessment method, and have undertaken a number of on-ground works projects including improving habitat through reed and willow control, training in pig control, mapping of pest plant and animals, fencing of 'River Red Gum' saplings and set-up of a trial watering system.

Oral abstracts

Collaborative research partnerships inform monitoring and management of freshwater habitats by traditional custodians

Christy Davies1, Yoshi Akune2, Ninjana Walsham1, Rebecca Dobbs2, Douglas Ward1, Neil Pettit2, Brad Pusey3

1. Nyul Nyul Ranger, Beagle Bay via Broome, WA, Australia
2. Charles Sturt University, Albury, NSW, Australia
3. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

Freshwater springs and billabongs are central to the life of Nyul Nyul people of the Dampier Peninsula in north Western Australia. For countless generations they have been an important source of food, clean drinking water and served as a place to cool off, and to find coolness in the hot dry desert climate. Nyul Nyul people have religious and cultural significance tied to these places of deep cultural significance, new threats to the freshwater habitats have emerged including inappropriate fire regimes, grazing by feral donkeys, and introduced fish species. A collaborative research approach has brought together Indigenous Rangers, Traditional Owners and researchers to utilise local traditional knowledge and scientific techniques to gain a richer understanding of culturally and ecologically important freshwater habitats on the Dampier Peninsular. Core components of the project include on-ground sampling to gather vital baseline scientific data includ- ing fish species distribution, physico-chemical variability and riparian condition. This data, combined with the analysis of remote sensing imagery on Nyul Nyul freshwater habitats, have been used as the basis for discussions and integration of local and traditional knowledge about these areas. The information gathered through these various means will identify practical monitoring techniques and allow for the development of culturally appropriate data collection tools, for the ongoing monitoring and protection of both the cultural and ecological values of Nyul Nyul freshwater habitats. This novel approach represents a best practice model for supporting Indigenous land and sea managers like the Nyul Nyul Rangers, who are the key to managing biodiversity across Australia’s vast and sparsely populated north.

Competing narratives? Contestation in managing floodplain country

Emma Liggemann

1. Charles Sturt University, Albury, NSW

Coastal freshwater floodplains are highly vulnerable to the impacts of climate change. As a socio-ecological system, this has rami- fications for people utilising floodplain resources. Determining acceptable management strategies can be contentious. In consider- ing adaptive management strategies to cope with future environmental change (e.g. salt water intrusion from sea level rise), environmental responses to environmental change from the past and present can shed light on how stakeholders perceive environ- mental change, as well as their capacity to respond. The East Alligator River floodplains in the Northern Territory, provide a case study to explore this. Aboriginal people and owners across this floodplain region retain a strong connection to understanding and the freshwater resources it provides. This research employed semi-directed interviews, on country visits and biographical mapping of customary resource use activities to consider Indigenous responses to past and contemporary environmental changes, includ- ing invasive weeds, feral animals and to fire regimes. This research outlines the contemporary alternative narratives of ‘acceptable’ uses of floodplain country. These are managing floodplain country for customary resource use, for livelihoods derived from the cattle industry, for conservation, and for tourism. The degrees to which these narratives compete or converge are discussed as are the effects of their respective management strategies on customary harvesting. This research presents a framework for under- standing the influences on people’s perceptions of environmental change, and the drivers influencing their capacity to respond. This is the first step in considering future adaptive strategies, both in the floodplain country of the Northern Territory and in any vulnerable freshwater socio-ecological system.

ASFB & ASL Congress 30 June – 3 July 2014 www.asfbasl.org.au

92

93
Oral abstracts

Extinct habitat, extant species: lessons learned from conservation recovery actions for the Pedder galaxias (Galaxias pedderensis) in south-west Tasmania, Australia

Bob Freeman1, Stuart Chilcott2, Peter E Davis3, David A Crook4, Wayne Fulton5, Premek Hnan6, Andrew C Sanger7, David Jarvis8

1. Inland Fisheries Service Tasmania, New Norfolk, Tasmania, Australia
2. Zoology Department, University of Melbourne, Parkville, Victoria, Australia
3. Department of Environment and Primary Industries, Horsham, VIC, Australia
4. Department of Environment and Primary Industries, Victoria, Australia
5. Freshwater Systems, Hobart, Tasmania, Australia
6. upper Canada College, Toronto, Ontario, Canada
7. University of Tasmania, Hobart, Tasmania, Australia
8. Tasmanian Museum and Art Gallery, Hobart, Tasmania, Australia

Tasmania, like other parts of Australia, has a rich biodiversity. The Pedder galaxias (Galaxias pedderensis) from Lake Pedder, Tasmania, Australia, is one of the world’s most threatened freshwater fish. The flooding of Lake Pedder in 1972 for hydroelectric power generation caused a major change to the ecosystem that initiated an irreversible decline in the Pedder galaxias within its natural range. The flooding inundated another headwater stream and introduced native and introduced species which degraded the biota. Numbers of the Pedder galaxias declined markedly as the impoundment matured and as colonising fish proliferated. Surveys in the 1990s confirmed the parlous state of the population, highlighting the need for conservation intervention. Several urgent conservation actions were undertaken to save the species from extinction. The conservation management was extremely challenging since rapidly declining fish numbers needed timely and critical decisions to underpin the future of the fish. Recommendations are provided arising from this case study to guide conservation of freshwater fish in similar circumstances.

Twenty years of conservation management of threatened upland galaxiids (Galaxiidae): blood, sweat, tears… and a little joy

Tarmo A Raadik1, Michael D Nicol2, Daniel J Stoessel1, Peter S Fairbrother3, Renae M Ayres4

1. Department of Environment and Primary Industries, Horsham, VIC, Australia
2. CSIRO Ecosystem Sciences & TrapWATER, James Cook University, Townsville, Queensland, Australia
3. Conservation Planning and Research Unit, ACT Government, Canberra
4. University of Canberra, Australian Capital Territory

Conservation of threatened species is challenging and often involves undertaking complex management actions with few resources in the face of competing social or environmental values or needs. The south-east of mainland Australia harbours a high diversity of non-migratory native galaxiids. Of 18 species, 78% have only recently been discovered. Fifteen species are found in upland freshwater catchments and 11 are considered critically endangered. This study is concerned with the Galaxiidae of the total of each of these consists of a short and narrow headwater reach of a single stream, usually upstream of a natural waterfall. Populations of each are considered to have declined dramatically, due primarily to predation from alien Brown and Rainbow trout, and are now at great risk of extinction. We have undertaken successful conservation management of one species for twenty years to prevent its extinction, and have recently applied the methods developed and lessons learnt to the management of additional species to achieve similar outcomes. Following a mix of largely successful conservation actions (e.g. predator control, ex situ captive management, artificial breeding, translocation), a key outcome was the demonstration of the utility of fairly simple management actions, though improved by adaptive refinement, and complimented by novel methods.

Predation rates of two threatened species by trout

Ben T Birdhurst1, Brendan C Ebner2, Mark Linternmans1, Rhiannon New3, Mark Jebson4

1. Institute for Applied Ecology, University of Canberra, Canberra
2. CSIRO Ecosystem Sciences & TrapWATER, James Cook University, Townsville
3. Conservation Planning and Research Unit, ACT Government, Canberra
4. Zoology Department, University of Melbourne, Parkville, Victoria, Australia

Trout predation is a threat to two upland blackfish Galaxias bispinosa and Macquarie perch Macquaria australasica. Dietary analysis of 757 rainbow trout Oncorhynchus mykiss and 44 brown trout Salmo trutta for the presence of two threatened fish species was conducted in a tributary & reservoir of the upper Murrumbidgee River catchment, Australian Capital Territory. In general piscivory by trout was low, though increased with size. Predation rate of two-spined blackfish was extraordinarily low, though often confirmed with visual observation. The incidence of predation of two-spined blackfish is surprising given anecdotal evidence that predation on this species is common. There was no evidence of trout predation upon Macquarie perch. Morphometric analysis of Macquarie perch and goldfish Carassius auratus revealed no significant difference, even though the latter was consumed. The lack of predation on Macquarie perch is likely attributed to the habitat partitioning and behavioural differences between predator and prey. Expansion of a resource in the catchment is likely to lead to an increase in the size and abundance of trout as well as an increase in the abundance of Macquarie perch, which may alter the current predator prey relationship between these species.

The low down on threatened paragalaxiids: interactions between fish ecology, habitats and hydrology are critical to population viability

Scott A Harding1, Kevin R Macfarlane2, Leon A Barmuta3, Carolyn J Maxwell4

1. School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
2. Environment Canada, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
3. Hydro Tasmania, Hobart, Tasmania, Australia
4. Department of Environment and Primary Industries, Hobart, Tasmania, Australia

Reproduction of littoral-spawning lacustrine fishes can be constrained by unfavourable water levels conditions in impoundments during breeding seasons. This is especially the case when spawning sites are restricted to certain types of substrata in systems with diverse ecological and hydrological regimes and heterogeneous habitats. Arthurs Lake and Great Lake, central Tasmania, Australia are integral resources within the Tasmanian hydro-electric power scheme. Collectively, endemic and threatened Paragalaxiids dissimi- liis, P. eolitroides and P. mesotes occur in these lakes and water level fluctuations have the potential to impact their populations. Interactions between: (1) the reproductive strategies of these fishes, (2) lake habitats, and (3) water level regimes were examined over a 5-year period encompassing variable hydrological conditions. Paragalaxiids species in Arthurs Lake and Great Lake vary in size-specific requirements for spawning, with discrete egg clusters being attached to the undersides of boulders at a median depth of 0.68 m (0.1 and 0.97 m of 0.35 and 1.18 m, respectively) during spring summer. Habitat mapping found limited areas of substrata in these lakes that could be suitable for spawning, and relationships between water levels and inundated spawning substrata were non-linear, with critical thresholds evident at relatively low water levels. In addition, biological traits such as low fecundity (<400 eggs per fish) and short longevity (predominance of fish <3 years of age) may limit the resilience and resistance of these fishes to water level-induced recruitment failures. To sustainably manage water levels in systems containing paragalaxiids, prescriptions that protect paragalaxiid breeding should be included in operational regimes.

Macro-ecological patterns and processes in the distribution and conservation status of Australian freshwater fishes

Matthew C Le Feuvre1, Stephen Swearer1, Tim Dempster1

1. Zoology Department, University of Melbourne, Parkville, Victoria, Australia

There is strong evidence for a positive relationship between geographic range size, body size and relative abundance in terrestrial systems, so much so it is considered an ecological “norm.” However, in marine fishes the evidence for this relationship is weak and in freshwater fish it is equivocal. If such patterns exist, they can be used to identify species at risk of extinction. Using existing information from databases and the literature, and accounting for phylogenetic signatures, we analysed the relationship between species range size, body size and relative abundance in 263 species of Australian freshwater fish. We tested if these three factors relate to diadromy, latitude, longitude, endemism at the regional and national level and conservation status. Range size and body size were strongly positively correlated. Species listed as threatened under the Federal Government’s EPBC Act had a range size an order of magnitude smaller than the size of threatened species and relationships with abundance were non-significant, with no effect of conservation listing. Therefore, geographic range size may be a good indicator of potential extinction risk, whereas abundance is less reliable. This study suggests that many species may be at risk of extinction and require conservation listing. Further, the recent-ecology of Australian freshwater fish is distinct from freshwater fishes in North America and Europe, likely due to the relatively stable nature of the Australian environment and the absence of large-scale glaciations.

Fish and pools: Sampling 101 for ecologists

Wayne Robinson1, Paul Brown2

1. School of Environmental Sciences, Charles Sturt University, Thurgobina, NSW, Australia
2. The Murray-Darling Freshwater Research Centre and, La Trobe University, Mildura, VIC, Australia

We discuss the common mistakes of pooling of field ecological data by field managers, particularly in the grey literature where peer review is often limited, or when using data collected for a different purpose. The most common misuse is to pool data from organisms collected across a number of sampling sites, effectively treating the organisms as independent replicates rather than the sampling sites, which are the true replicate, or primary sampling unit. Amongst other common errors is to weight sites in the selection process, such as by using strata to allocate sampling effort, but then combining data collected in sites across different strata. Examples and guidelines for pooling data are demonstrated using species accumulation curves and fish biomass data from Koondrook forest where 99% of the pooled wetland fish biomass in 2013 was from common carp. Yet the true interpretation of native fish biomass for the wetlands in Koondrook forest in 2013 was only 85% alien fish biomass. The principles also apply to temporal sampling, and we demonstrate this with fish data collected from fishways on the Hawkesbury-Nepean River system where the primary sampling unit is each trap rather than each fish inside the trap. Ideally this talk will start a discussion among the audience members that will lead to more consideration of sampling designs before starting sampling in future projects.
Oral abstracts

Benthic diatoms as indicators of herbicide toxicity in rivers
Rebecca Wood1, Simon Mitrovic, Richard Lim3, Satish Choy2, Ben Kefford1
1. Centre for Environmental Sustainability, School of the Environment, University of Technology, Sydney, Sydney, NSW, Australia
2. Department of Science, Information Technology, Innovation and the Arts, Queensland Government, Brisbane, QLD, Australia
3. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia

Benthic diatoms are common phototrophic organisms of lotic and lentic environments and have the potential to be used as in-situ indicator communities of herbicide pollution. Since many herbicides mode of action is light dependent, such as the photosystem II inhibitors (PSII), light conditions during exposure may alter which species are most at risk of herbicide toxicity in the field. There have been no studies investigating light effects on the relative herbicide sensitivity of freshwater benthic diatoms. Additionally the potential for herbicides of differing modes of action to alter the relative sensitivity of benthic diatoms within a natural benthic community is not well understood. The results of two experiments are presented and discussed, the first investigates whether relative sensitivity is altered by herbicide mode of action, and the second compares the relative sensitivities of multiple benthic diatom taxa under different light exposure scenarios exposed to either Atrazine or Glyazole. Natural riverine diatom communities were collected-in-situ and then exposed to herbicides in rapid toxicity tests. There were significant interactions between light level and herbicide concentration response in 4 out of 31 taxa; Ulnaria sp., Gomphoneisphaera cf ovicocum, Eugonata sp., and Navicula cf. veneta. However, in no cases did sensitive species appear to be tolerant, or vice versa, under altered light conditions. The relative herbicide sensitivity of benthic diatoms was independent of herbicide mode of action. This indicates freshwater benthic diatoms may be a suitable indicator for detecting toxicity of multiple herbicides, including those with differing modes of action.

Biomonitoring in Victorian estuaries using the Eastern blue spot goby, Pseudogobius sp
Kathryn Hassall1, Vincent Pettigrove1, Stephen Sweareng1
1. Centre for Aquatic Pollution Identification & Management, Department of Zoology, University of Melbourne, Parkville, VIC, Australia

The Eastern blue spot goby, Pseudogobius sp, is a small benthic species native to south-eastern Australia. It is abundant and widely distributed throughout Victorian estuaries and as such may be a valuable indicator species for determining differences in environmental health among estuaries. Here we describe differences in size and condition of gobies collected from a range of Victorian estuaries that differ in their levels of anthropogenic impact and surrounding land use. Collection sites ranged from pristine conditions to ones impacted by waste water discharge or influenced by urban or agricultural development. Based on gonad histopathology we observed differences in reproductive stage, degenerative changes in the gonads as well as the first observation of intersex in this species. This work demonstrates the merits of using blue spot gobies as a model species for biomonitoring and ecological research in the context of estuarine environmental assessment.

Factors affecting egg-laying responses of the freshwater snail, Amerianna cumingi, deployed in wet season toxicity monitoring of water quality
Chris Humphrey1, Mark Ellis
1. Environment Research Institute of Supervising Scientist, DARWIN, NT, Australia

One of the methods used to assess the effects of runoff water from the Ranger uranium mine (NT) on the adjacent receiving waters uses a form of early warning, biological monitoring – so termed toxicity monitoring – where reproductive output (egg production) of the freshwater snail, Amerianna cumingi, is measured. This small snail species demonstrates relatively high toxicological sensitivity to the main mine wastewater contaminants (Mg and U). Refinements to the monitoring technique have been made periodically since 1991 when the method was first introduced. A BCAP design is employed in which paired (P) control (upstream, C) – impact (downstream, I) response ‘differences’ are compared before (B) and after (A) potential mine-related disturbances. Statistical tests for impact detection have invariably resulted in ‘no change’ in responses between the several tests conducted in the wet season just completed (A period) and all previous wet seasons (B). However, after the 2009–10 wet season and relative to previous years, significantly greater egg production was observed downstream of Ranger compared with upstream. As a consequence of this finding, recent efforts have been directed at better understanding the environmental conditions (w/s water quality, hydrology, snail husbandry) affecting the production of snail eggs. This work helps distinguish mine-induced from natural effects on snail egg numbers for impact assessment purposes. Factors found to affect egg production include flow rates of creek waters through test containers, culturing method of snails, and the water quality variables, water temperature and electrical conductivity (EC) where a significant interacting effect has been observed.

Identifying the primary factors influencing aquatic ecosystem health in the Maribyrnong River
Claudette Kellert1, Kathryn Hassell2, Katherine Jeppe2, Jackie Myers3, Sara Long1, Bryan Gagliardi1
1. Centre for Aquatic Pollution Identification & Management (CAPIM), Parkville, Victoria, Australia
2. Agriculture Research Division, Agriculture Group, Dept of Environment and Primary Industries (DEPI), Macleod, Victoria, Australia

Aquatic ecosystems in urban areas are often ecologically impaired but causative factors are rarely identified, thus proving a challenge for environmental management agencies to improve ecosystem health. Causal effects may emerge by considering multiple lines of evidence at different levels of biological organisation to investigate impairment. This study was undertaken in the Maribyrnong River in the north-west of Melbourne, Victoria. Numerous pollution sources enter the catchment including runoff from residential properties, industrial estates and wet weather sewage discharges. The aims of this study were to identify the primary factors causing biological impact in the Maribyrnong River and to determine if biota are showing signs of exposure to sewage–related contaminants. To elucidate biological impairment we conducted chemical (pesticides, metals, nutrients, hydrocarbons) and faunal and flora assessments, including caging studies of mudsnails (Potamopyrgus antipodarum) and amphipods (Austrochiltonia subtenuis), oxidative stress biomarkers in shrimp (Parataya australiensis) and flatheaded gudgeon (Phylipnodon grandiceps), endocrine disruption-related endpoints in fish (P. grandiceps; Gambusia holbrooki) and toxicological studies with algae (Scenedesmus sp), chlorophytes (Chloronema tetpperi) and amphipods. Numerous metals, hydrocarbons and pesticides, including zinc, nickel, copper, lead, organic syntheses and synthetic pyrethroid pesticides, were detected throughout the catchment at levels exceeding the ANZECC guidelines. These contaminants were determined to be originating from two main sources. Pollution is likely to be affecting aquatic fauna, with P. antipodarum, A. subtenuis and C. tepperi populations ecologically impaired. The usefulness of considering multiple lines of evidence approach for aquatic biomonitoring and integration into management practices to achieve successful remediation will be discussed.

Climate change impacts on changes in flow regime & hydrological connectivity of floodplain wetlands
Fazil Karam1, Cuan Petheram1, Steve Marvanek1, Jim Wallace1
1. CSIRO, ACT, Australia
2. division of Land and Water, CSIRO, Glen Donmond, South Australia, Australia
3. TropWater, James Cook University, Townsville

Global climate change has been identified as one of the major factors that could potentially alter the duration and timing of floodplain inundation and the hydrological connectivity between floodplain waterbodies. This study simulated potential changes in flow regimes and hydrological connectivity under the historical climate and proposed future climates in the Fitzroy catchment (WA), a high conservation value aquatic ecosystem in northern Australia. The study was conducted using hydrodynamic model-ling in conjunction with remote sensing and GIS. Simulated inundation information was combined with land topography data to quantify connectivity between wetlands and the Fitzroy River. Given the very large number of wetlands on the Fitzroy floodplain, 30 off-stream wetlands were investigated for connectivity based on their importance to fish biota. Quantities were fragmented for three different floods, ranging from a mean annual flood to a 20-year return period flood under present climate and predicted future climate for 2050. Hydrology, topographic relief and river bank elevation were found to be key factors controlling the level of connectivity. Under a wetter future climate the length of time wetlands were connected to the main river channel increased up to 16% and under a dryer climate the wetland connectivity was simulated to decrease by 27%. The projected level of connection of individual wetlands under the historical climate and project future climate provides useful information to future studies on the movement and recruitment patterns of aquatic biota, wetland habitat characteristics and water quality, and biodiversity of individual wetlands.

Soil and water impacts following wildfire: current and past biogeomorphology of Dunphy Lake in the Warrumbungle National Park, NSW
Tsuyoshi Kobayashi1, Stephen J Jacobs2, Peter Berney3, Gunther Thieischinger1, Brendan Haines1, Timothy J Ralph3, Jamie Lobb1
1. Office of Environment and Heritage NSW, Sydney South, NSW, Australia
2. Northern Plains Regions, National Parks and Wildlife Service, Narrabri, NSW, Australia
3. Department of Environment and Geography, Faculty of Science, Macquarie University, Sydney, NSW, Australia

Publish consent withheld.
Effects of hypoxic blackwater events on microinvertebrate and aquatic plant communities emerging from wetland sediments

Oral abstracts

Effects of hypoxic blackwater events on microinvertebrate and aquatic plant communities emerging from wetland sediments

Nathan Ning1,2, **Rochelle Petrie**3, **Ben Gawne**4, **Daryl Nielsen**5, **Gavin Rees**2

1. MDFRC, WODONGA, VIC, Australia
2. La Trobe University, Wodonga, Victoria, Australia
3. CSIRO, Wodonga, Australia

The increased prevalence of hypoxic blackwater events as a consequence of river regulation and other river management practices poses a threat to the biodiversity of many river-floodplain systems. However, we still know little of the effects of hypoxic blackwater events on the aquatic biota. We investigated the impact of hypoxic blackwater events on river-floodplain microinvertebrate and amphibious plant communities by examining the effects of varying carbon (dissolved organic carbon - DOC) and dissolved oxygen (DO) concentrations on microinvertebrates and amphibious plants emerging from the sediments of two floodplain wetlands in the southern Murray-Darling Basin (MDB). Hypoxic conditions significantly reduced the taxon richness and abundance of microinvertebrates emerging from the sediments of each wetland, whereas carbon (i.e. DOC concentration) alone had little influence. The effects of hypoxia on microinvertebrates were partially reversed when oxygen concentrations were returned to normal values within three weeks. The results for the plant communities were less clear because the plants did not grow to an identifiable size during the experiment. Nevertheless, the data indicated that hypoxia had no adverse effect on seedling density, and instead, seedling density was significantly higher in the hypoxic treatments for both wetlands. These results suggest that hypoxic blackwater events can severely reduce microinvertebrate abundance in river-floodplain systems, although microinvertebrate abundance may be restored reasonably quickly if oxygen returns within a short time (three weeks). In comparison, the seedling emergence of some amphibious plant taxa may actually be promoted after being exposed to the hypoxic conditions associated with such events.

The eradication and management of European carp from two large freshwater lakes in Tasmania

Jonah Yolk1

1. Inland Fisheries Service, New Norfolk, TAS, Australia

European carp (Cyprinus carpio) were first discovered in Lakes Crescent and Sorrell in January 1995, where they had previously been absent from Tasmania. As a result, the Carp Management Program was established to contain, control, and ultimately eradicate carp from the lakes. Through the development of various techniques over 15 years (1995-2007), a complete eradication of carp from Lake Crescent was achieved using an integrated approach. By using these strategies in Lake Sorrell, the carp population was estimated to have been reduced to less than 50 fish by 2009. However, a spawning event which occurred in spring that year resulted in the introduction of approximately 50 000 carp. The techniques used to target these fish varied with life stage. Juvenile carp were initially targeted using rottenene poison, as they were concentrated in marlin environments. As they developed further, intermittent electro-fishing, barriers, and traps were used to target these fish as they became more mobile. Biotelemetry techniques were also used to gather knowledge of seasonal habitat preference. In early 2012, a mark/recapture population estimate was initiated using both the Peterson and Schnabel methods of calculation. The most current population estimate calculated in May 2014 suggested that there are now less than 10 000 fish remaining, with 82% of the original population removed. There will be increased emphasis on targeting the remaining carp habitat this coming spring/summer, to take advantage of a strong sex bias towards maturing males. The prevention of spawning will also be a high priority.

How do widespread generalist fish species persist in the extreme environment of the Lake Eyre Basin, central Australia

Ashley Murphy1, **Mark Adams**2, **Alan Lemmon**3, **Emily Morarity Lemmon**2, **Dale McNeil**4, **Thuy Nguyen**5, **Peter Unmack**2, **Ross Thompson**1, **Jenny Davis**5, **Paul Sunnucks**1

1. Monash University, Oakleigh East, VIC, Australia
2. Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, Australia
3. Department of Biological Sciences, Florida State University, Tallahassee, FL, United States
4. Department of Water, Environment and Natural Resources, Adelaide, SA, Australia
5. Biodiversity Research Division, Department of Environment and Primary Industries, Bunyorda, VIC, Australia

The Lake Eyre Basin in the central Australian and zone is one of the harshest environments freshwater fishes inhabit. Waterholes are often the only available habitat for rievers, but this habitat becomes greatly limited during drought periods, and within some river basins almost all waterholes have dried up at least in the past 200 years. Fish species in the Basin range from special- ized endemics, to widespread generalists found across Australia. Generalists are expected to utilise a resilience strategy to persist, where they are able to rapidly disperse and re-colonise habitat when conditions improve, while specialists are able to withstand ex- tende conditions – a resistance strategy. This study uses genetic techniques to investigate the population ecology of three generalist fish species (bony bream Nematalosa erebi, barbed gruntler Ammonitria percoidea, and spangled perch Leptopotherapon uniculus), sampled across the Basin’s river systems. Preliminary results, based on mitochondrial and nuclear sequence data, show little genetic diversity within river systems, but significant variability among them. This suggests that populations in different drainages are functionally isolated and subject to genetic bottlenecks, and that the species may be undergoing gene flow due to high mobility. Future work will focus on the analysis of additional mitochondrial and nuclear sequence data, and comparisons with two resistant taxa (desert goby Chlamydogobius eremius, and Lake Eyre hardyhead Cratogeophagus eyresii), will also be presented.

Increasing the science capability of Indigenous Marine Rangers

Simon Xueerel1, **Thor Saunders**1, **Chris Entry**1, **Robert Carmel**1, **Steve Newman**1, **Mike Travars**2

1. NT Fisheries, Department of Primary Industry and Fisheries, Darwin
2. WA Fisheries, Perth

The Indigenous Community Marine Ranger Program is funded by the NT Government and provides valuable surveillance and research information back to the NT Fisheries Division. Current funding is allocated to eight ranger groups with some 70+ rangers have been trained in a Certificate III Fisheries Compliance course. The success of this program has led to the development of a Measurement and Analysis Certificate II course that will provide rangers with skills in collecting and recording scientific data in both the field and laboratory and a background into natural resource management. Initially 12 students will trained from communities across northern Australia and if successful the course will become available to other marine rangers. This training course will provide benefit to Indigenous communities by increasing the marine ranger group specific skill set, provide avenues to future employment for students and support their interest in being involved in management of their marine resources. These students will also provide a valuable asset in remote areas of northern Australia enabling the collection of a range of scientific information at a much lower cost than if a research team had to travel and conduct the sampling themselves. This project is funded by the Northern Territory Government, FRDC, WA Fisheries and Queensland Department of Agriculture, Fisheries and Forestry.

Aboriginal cultural fishing in coastal far northern NSW

Stephan Schnierer1, **Egan**1

1. School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW

Aboriginal cultural fisheries are now acknowledged as one of three fishing sectors in Australia along with the commercial and recreational sectors but little is known about them. This presentation is based on a study of Aboriginal cultural fishing in NSW funded by FRDC. The study focussed on the Tweed region of far north NSW and was done in partnership with traditional Aboriginal owners. A specially designed questionnaire and cultural fishing logbook were used to obtain quantitative and qualitative catch data. A total of eight Aboriginal participants completed the questionnaire and 20 kept logbooks. This study found that cultural fishing still occurs on a regular basis, is predominantly shore-based around estuaries and adjacent coastal waters. The main gear types used were rods and handlines and to a lesser extent nets, traps and spears. The cultural catch was made up of a range of finfish and invertebrate species. The finfish component was dominated by estuarine and near-shore species such as tailor (Pomatoma saltatrix) sand whiting, (Sillago ciliata), mullet, (Mugil cephalus), swallowtail dart (Trachinotus coppersider), bream (Acanthopagrus australis) and dusky flathead, (Platycephalus fusca). A few Indigenous fishes were found in deeper waters and these fish types tend to be dominated by snapper (Papilatus auratus). A variety of invertebrates are also caught with the dominant species being pipis, (Plebi- donax deltoides), oysters, (Saccostrea glomerata), beach worms, (F. Onuphidae), ballet yabbies (Callianassa australiensis), mud crabs, (Scylla serrata), and prawns. The cultural catch is consumed by the fishers, their families, extended families and other community members. To a lesser extent some of the catch is bartered or traded for other goods and services within the community.

Coastal aquaculture in British Columbia: Perspectives from three indigenous communities

Kathryn L. Tebbutt1, **Mark Flather**1

1. University of Victoria, Victoria, BC, Canada

Most aquaculture tenures in British Columbia (BC), Canada, are located in coastal First Nation traditional territories, making the aquaculture industry very important and relevant to First Nation communities. First Nations, however, are severely underrep- resented in decision-making and management of the industry. Key informant interviews were conducted in three indigenous communities in BC’s central and north coast to achieve a greater understanding of perspectives towards fishnish, shellfish, sea- weed, and Integrated Multi-Trophic Aquaculture (IMTA). This research illuminates major issues, concerns, and the need for greater transparency in Canada’s aquaculture sector, as well as areas that are in line with First Nations values. From drawing on the results of this study it evident that the majority of issues are in fishnish aquaculture and that including indigenous knowledge and participation in decision-making will make for a less contentious industry.
Oral abstracts

175

Victorian Traditional Owner involvement in waterway management

Amber Clarke

1. Department of Environment and Primary Industries, East Melbourne, VIC, Australia

The new Victorian Waterway Management Strategy provides the policy framework for managing Victoria’s waterways for eight years. The strategy had limited consideration of Traditional Owner rights and interests in waterway management. The policy development process for the new strategy incorporated a comprehensive stakeholder engagement program. Involving Traditional Owners in the development of state policy was challenging, since Traditional Owner groups generally do not speak for Country. Knowing the right representatives to speak for Country continues to be difficult for policy makers. Specific policies and actions were developed for the new strategy to ensure the involvement of Victoria’s Traditional Owners in waterway management. Cultural values of waterways were separated from social values to demonstrate the importance of cultural values in their own right. Traditional Owners were able to identify and develop regional Waterway Strategies and a state guidance note was developed to support this process, in consultation with relevant representatives. Formal evaluation of the regional engagement processes will be undertaken to enable continuous improvement in this area. The regional Waterways' organisations must identify Aboriginal values associated with waterways and how they can be better incorporated into regional planning processes. Opportunities for education, training and capacity building are provided through scholarships to university graduate programs in waterway management and natural and cultural resource management.

176

Capacity building and science mentorship for Indigenous communities

Jonathan Taylor

1. NT Government, Wulagi, NT, Australia

NT Fisheries Research and the Indigenous Development Unit are currently working on a project that aims to collect biological data and harvest viability information of under-utilised fish and invertebrate species that are abundant in coastal waters near remote NT communities. This project involves the active collaboration of fisheries staff, indigenous rangers and remote communities. Researchers will use a holistic approach to bring together technical, scientific and local knowledge of fish, invertebrates and marine habitats to identify new opportunities for small-scale enterprises whilst increasing indigenous participation in the seafood industry. The development and sustainability of these enterprises will be underpinned with ongoing capacity building, science mentorship and monitoring. Therefore the ability to correctly identify, measure, weigh and sample marine resources is crucial for the success of any future management and monitoring programs of marine resources.

Most remote communities and outstations do not have reliable access to markets, resources or infrastructure and thus the ability to diversify the range of species caught and gear used is important for maintaining a fresh and consistent supply of product within and outside of the community. We are incorporating traditional techniques such as spearing and fish traps with modern methods and gear such as line and nets in order to minimise the learning curve and effort required to fish. Trials have successfully investigated the biology and harvest viability of species such as whiting and mullet. In addition to providing valuable skills that are transferable across a wide range of industries we anticipate this project will provide the dual benefit of improved nutrition and sustainable self-management and monitoring of on-country marine resources.

The Kimberley Ark: assessing and conserving freshwater fish biodiversity in Australia’s last pristine river systems

James Shelley, Stephen Swearengin, Tim Dempster, Peter Unmack, Michael Hammer

1. Melbourne University, Melbourne, VIC, Australia
2. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
3. Natural Sciences, Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia

Freshwater ecosystems worldwide are experiencing a period of unprecedented biodiversity loss. Effective biodiversity conservation requires accurate estimates of biodiversity and knowledge of species’ threat of extinction. The Kimberley region in remote northern Australia, which now faces imminent expansion of mining and petroleum operations, is both a biodiversity hotspot and a black hole in scientific knowledge. At least 18 (~40%) of the region’s diverse freshwater fish species are found nowhere else and many of these endemics are extremely range restricted. However, a dearth of surveys, and ecological and genetic studies means that current biodiversity estimates are not robust and the risk of extinction these species face is unknown. There is also the true extent of biodiversity of the Kimberley freshwater systems and the extinction risk using a combination of molecular techniques and ecological analyses. Hypotheses on the causes of diversity in fish communities will be tested by constructing phylogenies for two of the regions major families (Terapontidae and Melanotaeniidae). Furthermore, microsatellite data will provide information on population connectivity, and population genetic structure within species to evaluate their extinction risk in the face of future impacts. Finally, reproductive and early life-history ecology will be investigated to assess their contribution to the range-restriction and evolution of the Kimberley’s endemic species. I will present my project ideas and design and the results of my phylogenetic analysis, which provides evidence for a sweet of undescribed freshwater fish species.

177

178

Conservation of an endangered fish species Murray hardhead (Craterocephalus rufulaitis) in the upper South Australian Murray-Darling Basin region

Lara Sutto

1. Department of Environment, Water and Natural Resources, Berri, SA, Australia

Murray hardhead Craterocephalus rufulaitis, a native fish species endemic to the Murray Darling Basin, is listed as ‘endangered’ under the Commonwealth EPBC Act. Its current distribution is thought to be limited to seven remaining populations within the Murray Darling Basin. Due to prolonged drought in the South Australian Riverland region, followed by high flows and flooding in 2010 - 2012, the status of Murray hardhead in the region was unclear. High levels of connectivity and subsequent potential for movement of fish, together with increased difficulty in sampling fish during flood conditions resulted in the capture of low abundances or even absence of the species from most sites where it was once abundant. However, recent flooding also resulted in the inundation and alteration of salinity regimes of habitats that were previously unfavourable for the species. Post flood management actions through collaborative projects are likely to have assisted the recovery of the species within the region owing to improvements in habitat conditions. Sampling results at sites between 2012 and 2014 have demonstrated successful recruitment within individual populations. This is an encouraging result in regards to the status of this species in the region, however should be viewed with caution due to the Basin wide vulnerability of the species.

179

Spawning dates of the endangered Macquarie perch in the regulated upper Murrumbidgee River

Mark Lintermans

1. University of Canberra, Canberra, ACT, Australia

Macquarie perch Macquaria australasica is listed as endangered under national and state legislation. The species is now confined to a handful of self-sustaining populations across its range, several of which are in rivers with regulated flows. One of these rivers is the upper Murrumbidgee River, with a large regulating storage (Tantangara Dam, storage capacity 252 GL, altitude 1256 m) at its head. Tantangara is part of the Snowy Scheme and diverts approximately 99% of inflows across the range into the coastal Lake Bombala. Streams releases from Tantangara are managed by Snowy Hydro, with environmental releases made since 2005 and since 2010-11 a major objective of annual flow releases has been to enhance spawning of Macquarie perch. Flows for this purpose have been released from 2010/11 onwards, with 2011/2012 being the largest volume of water ever released (or likely to be released) from Tantangara. A small sample of otoliths from Young-of-Year (YOY) Macquarie perch collected at Kissops Flat (18 km upstream of Cooma) in mid-2011, early-2012, and early 2013 were daily aged, and spawning dates estimated by back calculation. In 2012 spawning occurred from late October-mid December and in 2012 in November. Calculated spawning dates from 2010 and 2011 will be discussed. Correlation of spawning with water temperature is unclear, possibly as a result of the highly regulated flows in the river and cyclic releases from Tantangara. Spawning dates and cues in the upper Murrumbidgee are compared with lower altitude populations of this species.

180

Understanding natural spawning behaviors to enhance captive breeding success of endangered Macquarie perch (Macquaria australasica)

Prudence McGuffie

1. Institute of Applied Ecology, Canberra University, Canberra, ACT, Australia

Populations of Macquarie perch have declined severely since the nineteenth century and only a small number of isolated remnant populations remain. Current captive breeding – introduction programs to aid in the recovery of the species in both Victoria and New South Wales have had limited success for a variety of reasons. Attempts at artificial propagation of the species in Victoria (due to its popularity as a sporting and table fish) have been under examination for nearly a century, but only wild-caught spawning run broodfish could be successfully propagated. The utility of this method for conservation breeding was limited and this hurdle has now been overcome. Conservation breeding programs are no longer reliant on collecting spawning run broodfish, however mediocre fertilisation success still limits hatchery production. It is likely that key aspects of pre-conditioning and the timing of hormone induction in captivity play a role. Understanding these processes in the few wild populations that remain may provide clues which will lead to enhanced captive husbandry and breeding strategies. This study used acoustic telemetry paired with back calculation of spawning dates from young of year fish to identify environmental triggers of spawning migrations and timing of successful spawning events of wild Macquarie perch. Initial analysis suggests that spawning migrations occur within the receding tail of flow pulses and are associated with a subsequent increase in water temperature.
Oral abstracts

The ecology of juvenile Larutghooth Sawfish Pristis pristis in the Adelaide River, Northern Territory: movement patterns and habitat use

1. Charles Darwin University, Darwin
2. CSIRO, Brisbane

The sawfishes (family Pristidae) are considered one of the most threatened groups of aquatic species, with all species assessed as Critically Endangered or Endangered on the IUCN Red List. The Larutghooth Sawfish Pristis pristis was once globally widespread across the Pacific Ocean, but now occurs as fragmented populations in the Carolines, Indonesia, Papua New Guinea and Australia. This species faces severe threats resulting from overfishing and habitat degradation, and population viability analysis indicates that it is still undergoing considerable declines in abundance and extent of its distribution. In northern Australia, many anthropogenic activities are considered threats to Larutghooth Sawfish populations, including fishing and habitat modification. Effective management of this species is hampered by a lack of knowledge of the distribution, movement patterns, habitat use and requirements, life history and threats facing their populations. This information is required to provide a scientific basis for protection of critical habitats, mitigation of impacts, and regulation of harvest regimes. We aim to support the management of Larutghooth Sawfish by providing an improved ecological understanding of the species. Acoustic tracking of juvenile Larutghooth Sawfish in the Adelaide River of the Northern Territory is being undertaken using both active tracking and a passive receiver array. Preliminary results for the movement patterns and habitat use of Larutghooth Sawfish are presented. Clearly identified and consistent movement patterns have been detected on larger spatial and temporal scales. On smaller spatial and temporal scales movement patterns are more variable.

The sawfishes (family Pristidae) are considered one of the most threatened groups of aquatic species, with all species assessed as Critically Endangered or Endangered on the IUCN Red List. The Larutghooth Sawfish Pristis pristis was once globally widespread across the Pacific Ocean, but now occurs as fragmented populations in the Carolines, Indonesia, Papua New Guinea and Australia. This species faces severe threats resulting from overfishing and habitat degradation, and population viability analysis indicates that it is still undergoing considerable declines in abundance and extent of its distribution. In northern Australia, many anthropogenic activities are considered threats to Larutghooth Sawfish populations, including fishing and habitat modification. Effective management of this species is hampered by a lack of knowledge of the distribution, movement patterns, habitat use and requirements, life history and threats facing their populations. This information is required to provide a scientific basis for protection of critical habitats, mitigation of impacts, and regulation of harvest regimes. We aim to support the management of Larutghooth Sawfish by providing an improved ecological understanding of the species. Acoustic tracking of juvenile Larutghooth Sawfish in the Adelaide River of the Northern Territory is being undertaken using both active tracking and a passive receiver array. Preliminary results for the movement patterns and habitat use of Larutghooth Sawfish are presented. Clearly identified and consistent movement patterns have been detected on larger spatial and temporal scales. On smaller spatial and temporal scales movement patterns are more variable.

Oral abstracts

The Lake Condah restoration: combining traditional knowledge and science to re-activate Australia’s oldest and largest traditional aquaculture system

1. Gunditjmara Traditional Owners Aboriginal Corporation, Melbourne, VIC

Lake Condah in south-western Victoria is at the heart of Gunditjmara country and the Budj Bim larvae flow and is a place where Gunditjmara people developed Australia’s oldest and largest aquaculture system for the farming of eels. In 2004, the Lake Condah Water Restoration Business Plan outlined a renewed strategy for one of the most significant wetland and archaeological restoration projects ever undertaken in Australia. Planning for the construction of a weir and flyway to restore permanent water in the wetlands included extensive community engagement and detailed scientific research. An important aspect of the project was an assessment of benefits from weed and fish control and compensate for the decline in wetland area and other aquatic species prior to the works. This study was a collaborative effort between Traditional Owners and the Arthur Rylah Institute of Environmental Research, and utilized a blend of Aboriginal traditional knowledge and scientific approaches. In 2010, the new weir in Lake Condah was constructed and has reactivated the ancient eel fishery network and restored the lake’s ecology. Large numbers of fish and acoustically tagged eels moved into the lake soon after it was flooded and have continued to live there. Gunditjmara people can now access the lake more often throughout the year and we continue to make traditional grass eel baskets for the harvest of eels.

Connecting land and water: understanding vertebrate fauna diversity in river floodplains and riparian zones

1. Wealth from Oceans Flagship, CSIRO, Hobart, Tasmania, Australia

Environmental scientists and indigenous people are increasingly becoming involved in collaborative research projects. For the past decade we have been involved in a collaborative study of fish and environmental flows in the Daly River as part of a bigger team of researchers and Traditional Owners. In this talk we look back on what we have learnt from this project and where we need to go in the future. We started out by discussing what we all wanted to get out of what was originally a 1 year project. From talking together we moved on to working together to do the research and on other activities like communicating the research findings. Opportunities and support to continue the partnership has meant that what began as a short term project now has a longer term vision and after 10 years we have seen a wide range of outcomes from working together. This includes new scientific knowledge, greater recognition of Indigenous knowledge, capacity building and community development and the influence of the project extends beyond just the researchers and Wildlife Management owners directly involved but as just a scientific research project the broader contribution to the social and emotional well being of the community has been a key to the continued interest in the ongoing partnership. It hasn’t always been easy and although overcoming challenges has been difficult at times, it helped the partnership grow stronger. We believe that its now more important than ever to maintain that cultural and scientific relationship and that we may now start to confer some relevance to the biodiversity and the partners and the roles and commitment required to meet these expectations.

Fishing for revenue: how leasing quota can be hazardous to your health (AWARD TALK)

1. Wealth from Oceans Flagship, CSIRO, Hobart, Tasmania, Australia

The Lake Condah restoration: combining traditional knowledge and science to re-activate Australia’s oldest and largest traditional aquaculture system

1. Gunditjmara Traditional Owners Aboriginal Corporation, Melbourne, VIC

Lake Condah in south-western Victoria is at the heart of Gunditjmara country and the Budj Bim larvae flow and is a place where Gunditjmara people developed Australia’s oldest and largest aquaculture system for the farming of eels. A drain through Lake Condah was continually excavated from 1904 until 1954 to allow farmers increased access to land for agricultural purposes. The drain was eventually blocked in 1955. We present a series of conceptual models developed to synthesise current understanding of how key processes influence the persistence of terrestrial and semi aquatic vertebrates in river floodplains and riparian zones. We define three major functional groups of species based on their relative dependence on water and vegetation for habitat or movement, and describe conceptual models for each functional group from the ground up, synthesising models for multiple Australian species in each group. We translate these models into spatially and temporally explicit management goals to explore useful synergies and generalisations across functional groups, and ways in which landscape management can integrate spatial and temporal variability in vegetation and water to support a full suite of species.
Oral abstracts

Groundwater as a key driver of freshwater water ecosystem responses to drought

Jarrod Kath1, Fiona Dyer1, Evan Harrison1, Kathryn Reardon-Smith1, Sue Powell1, Andy Le Brocque1, Elad Dafny1, Marian Patrick2, Tony Jakeman1, Barry Crooke3, Sondoss El Sawah1

1. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
2. Australian Centre for Sustainable Catchments, University of Southern Queensland, Toowoomba
3. National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba, QLD

Oral abstracts

Utility of Unmanned Aerial Systems for environmental monitoring of wetlands

Renee Bartolo1, Tim Whiteside1, Peter Erskine2, Andrew Fletcher2, Ashray Doshi2

1. Supervising Scientist Division, Department of the Environment, Darwin, NT
2. Centre for Mine Land Rehabilitation, University of Queensland, Brisbane

Wetland environments in Australia are often remote and inaccessible. They are also spatially heterogeneous and have high habitat complexity. In northern Australia, the inaccessibility is compounded by strong seasonality with widespread flooding during the wet season. The use of optical satellite imagery for monitoring tropical wetlands is limited due to the highly seasonal environment characterised by a wet season dominated by ubiquitous cloud cover and a dry season dominated by atmospheric smoke resultant from wildfires. Unmanned Aerial Systems (UAS), commonly known as ‘drones’, enable very high resolution imagery of wetlands to be captured which are not restricted by the same limitations as those of satellite imagery. There is unprecedented flexibility and cost effectiveness in obtaining high resolution imagery through the use of a UAS as it can be readily deployed when conditions are optimal.

This paper presents the results of a test flight over part of the Magela Creek floodplain, located in Kakadu National Park, and Buffalo Bilabong (located downstream of the Ranger Uranium Mine). Both standard red, green, blue, and near infrared imagery were captured in October 2013 at a spatial resolution of 30cm. The results indicate that the data can be used for many applications including detailed vegetation community mapping, weed identification, animal usage of habitat (through detection of tracks) and population surveys (e.g. waterbirds). The imagery may also be used to survey creeks and riparian zones in a way not previously available.

Dams in Northern Australia – An Example of the Limnology of the Burdekin Falls Dam and its Effect on Downstream Environments

Damien Burrows1

1. tropWATER, James Cook University, TOWNSVILLE, QLD, Australia

The Burdekin River, on Queensland’s tropical east coast, has variable water clarity, running turbid during elevated wet season flows and relatively clear during dry season and drought periods. The discharge characteristics of the Burdekin River change with rainfall and river flow, and the water supply infrastructure planned for development. The dams are expected to significantly affect the downstream environment. This paper provides an overview of the water quality and water supply impacts on downstream environments created by the two major impoundments, Darwin River Reservoir (DRR) and Manton River Reservoir (MRR), located on the Burdekin River.

Data on the hydrodynamics of inflows into Darwin River Reservoir (DRR) and Manton River Reservoir (MRR) are described in respect of the environmental flow release strategies. Since 2010, environmental water flows have been released on a weekly basis. This paper presents the results of a test flight over part of the Magela Creek floodplain, located in Kakadu National Park, and Buffalo Bilabong (located downstream of the Ranger Uranium Mine). Both standard red, green, blue, and near infrared imagery were captured in October 2013 at a spatial resolution of 30cm. The results indicate that the data can be used for many applications including detailed vegetation community mapping, weed identification, animal usage of habitat (through detection of tracks) and population surveys (e.g. waterbirds). The imagery may also be used to survey creeks and riparian zones in a way not previously available.

Ecological responses to changes in environmental flow release strategies for a temperate river system in NSW

Jamie L Corfield1,2, Tony Paull, Adrian Dickson, Tristan Newton-McGee1

1. GHD, Brisbane, QLD, Australia

2. Water and Wetlands Team, Office of Environment and Heritage, Sydney, NSW, Australia

This paper presents the results of a test flight over part of the Magela Creek floodplain, located in Kakadu National Park, and Buffalo Bilabong (located downstream of the Ranger Uranium Mine). Both standard red, green, blue, and near infrared imagery were captured in October 2013 at a spatial resolution of 30cm. The results indicate that the data can be used for many applications including detailed vegetation community mapping, weed identification, animal usage of habitat (through detection of tracks) and population surveys (e.g. waterbirds). The imagery may also be used to survey creeks and riparian zones in a way not previously available.

Dams in Northern Australia – An Example of the Limnology of the Burdekin Falls Dam and its Effect on Downstream Environments

Damien Burrows1

1. tropWATER, James Cook University, TOWNSVILLE, QLD, Australia

The Burdekin River, on Queensland’s tropical east coast, has variable water clarity, running turbid during elevated wet season flows and relatively clear during dry season and drought periods. The discharge characteristics of the Burdekin River change with rainfall and river flow, and the water supply infrastructure planned for development. The dams are expected to significantly affect the downstream environment. This paper provides an overview of the water quality and water supply impacts on downstream environments created by the two major impoundments, Darwin River Reservoir (DRR) and Manton River Reservoir (MRR), located on the Burdekin River.

Data on the hydrodynamics of inflows into Darwin River Reservoir (DRR) and Manton River Reservoir (MRR) are described in respect of the environmental flow release strategies. Since 2010, environmental water flows have been released on a weekly basis. This paper presents the results of a test flight over part of the Magela Creek floodplain, located in Kakadu National Park, and Buffalo Bilabong (located downstream of the Ranger Uranium Mine). Both standard red, green, blue, and near infrared imagery were captured in October 2013 at a spatial resolution of 30cm. The results indicate that the data can be used for many applications including detailed vegetation community mapping, weed identification, animal usage of habitat (through detection of tracks) and population surveys (e.g. waterbirds). The imagery may also be used to survey creeks and riparian zones in a way not previously available.

Ecological responses to changes in environmental flow release strategies for a temperate river system in NSW

Jamie L Corfield1,2, Tony Paull, Adrian Dickson, Tristan Newton-McGee1

1. GHD, Brisbane, QLD, Australia

2. Water and Wetlands Team, Office of Environment and Heritage, Sydney, NSW, Australia

This paper presents the results of a test flight over part of the Magela Creek floodplain, located in Kakadu National Park, and Buffalo Bilabong (located downstream of the Ranger Uranium Mine). Both standard red, green, blue, and near infrared imagery were captured in October 2013 at a spatial resolution of 30cm. The results indicate that the data can be used for many applications including detailed vegetation community mapping, weed identification, animal usage of habitat (through detection of tracks) and population surveys (e.g. waterbirds). The imagery may also be used to survey creeks and riparian zones in a way not previously available.
Oral abstracts

Opening the flood gates: the compromises necessary to achieve environmental flow releases
Rebecca E Lester 1, Jan L Barton 1, Karl W Fliesa 2
1. Deakin University, Warrnambool, Vic, Australia
2. Department of Geosciences, University of Arizona, Tucson, Arizona, USA
Most ideal environmental flow regimes are designed by hydrologists or ecologists to meet a set objective(s), such as improving the ecological condition of a particular ecosystem. This involves determining a volume likely to achieve the objective, designing a release hydrograph and developing a monitoring program to assess the impact of the flows relative to the objective. Many large dams have been constructed with a specific design to opening the flood gates to deliver an actual environmental flow event is constrained by a large number of factors other than how best to meet environmental objectives. Policy and political constraints can have a large impact on the amount of water that may be available and the manner in which water is shared among a wide range of users, including across political boundaries. Socioeconomic constraints can also be relevant: for example, the timing of irrigation flows can influence when channel capacity is available. Finally, water-delivery constraints such as channel capacities can all influence how an environmental flow event may be possible. Whether environmental flow constraints on the objectives and flow delivery profile of the first environmental flows in the Colorado River, USA/Mexico with the planning process associated with such flows in the Murray-Darling Basin, Australia. Differences between the case studies in the existing flow regimes, allocation of water rights, competing interest of multiple states and countries and in the maturity of the science regarding potential ecological impacts of flows result in very different planning processes and potentially very different environmental and other outcomes.

The effects of altered flow and bed sediment on benthic macroinvertebrates in stream mesocosms
Ivor Grooms 1, Iwan Jones 2
1. NSW Office of Water, ARNIDALE, NSW, Australia
2. School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
In regulated environments, environmental flow regimes (the provision of water to maintain ecosystems) are the main management technique used to ameliorate the ecological effects of flow alteration. In addition to altered flow regimes, increased bed sedimentation is also frequently associated with lower flows in regulated rivers. We tested the separate and combined effects of altered flow and riverbed material on benthic invertebrates in twelve flume mesocosms at the Freshwater Biological Association’s River Laboratory in Dorset, UK. Each mesocosm contained two bed sediment types; clean sediment in the upstream section and experimentally colonised (EC) sediment (10% by weight of fines) in the downstream section. Two flow rates were initially established equally amongst the twelve mesocosms, a higher flow rate to create turbulent flow and the lower flow rate to create a transitional flow between turbulent and laminar flows. After 30 days invertebrates were sampled and the flow in six of twelve mesocosms was reversed. The experiment was finalised after sampling invertebrates at day 70. We demonstrated that the addition of fines to stream sediments and the alteration of flow affected benthic macroinvertebrate composition. However, higher flows did not ameliorate the effects of added fines. It is possible that the difference between the turbulent and transitional flow regimes (and their alteration) in the mesocosms was not great enough to create enough shear stress or power to remove fines or alter sediment dynamics.

Benthic algal biomass and assemblage changes following environmental flow releases and unregulated tributary flows downstream of a major storage
Simon Mitrovic 1, 2, Alec Davie 1, 2
1. NSW Office of Water, Sydney
2. University of Technology, Sydney
3. Sydney Catchment Authority, Sydney
The Severn River, Australia, is regulated by a large dam which reduces the magnitude of high flow events. Environmental flows (EFs) have been allocated to increase the magnitude of flows to improve ecological outcomes such as reducing filamentous algal bio-
mass and re-setting succession to early stage communities. Benthic algal biomass and assemblage structure were examined at two cobble dominated riffle sites downstream of the dam before and after two EFs. Both EFs had discharges of ~1.16 m3 s-1 (near bed flow velocity of ~0.9 m s-1). Neither EF reduced benthic algal biomass (as chlorophyll a) but sometimes led to increases with some filamentous algae (Oligoclonium and Lemnothrix) increasing in density. An unregulated flow event from a tributary between the two sites increased discharge to 25.2 m3 s-1 (flow velocity of ~1.2 m s-1) which decreased biomass and filamentous algal density. The similarity in flow velocities between scouring and non-scouring events suggests that thresholds may exist and/or suspended sediment and altered flow affected benthic macroinvertebrate composition. However, higher flows did not ameliorate the effects of added fines. It is possible that the difference between the turbulent and transitional flow regimes (and their alteration) in the mesocosms was not great enough to create enough shear stress or power to remove fines or alter sediment dynamics.

The impact of feral camels on remote waterholes in the Katiti Petermann Aboriginal Land Trust
Glenis McBurnie 1, Jayne Brim Box 1
1. NT Government, Alice Springs, NT, Australia
The Katiti Petermann Aboriginal Land Trust in central Australia contains significant biological and cultural assets including the World Heritage-listed Uluru and Kata Tjuta National Parks. Until recently relatively waterbodies in this remote region were not well studied, even though most have deep cultural significance to local Aboriginal people. The region also contains some of the highest densities of feral camels in the nation, and was a focus area for the recently completed Australian Feral Camel Management Project. Within the project, the specific impacts of feral camels on waterholes were assessed at 30 waterholes in the Petermann ALT. We found the aquatic invertebrate biodiversity was significantly lower at camel-accessible sites, and fewer aquatic species considered “sensitive” to habitat degradation were found at sites where camels were present. In addition, the water quality at camel-accessible sites was significantly poorer (e.g., more turbid, more DO supersaturation, etc.) than at sites that camels could not access. The results of a multi-year camera trap study at the same waterholes suggest that camels can trigger a ‘competitive cascade’ whereby native species are displaced by apex predators that have been displaced by camels. These results, in combination with the emerging research and anecdotal evidence, suggest that large feral herbivores, such as camels and horses, are the main immediate threat to many waterbodies in central Australia. Management of large feral herbivores will be a key component in efforts to maintain and improve the health of waterbodies in central Australia, especially those not afforded protection within the national park system.

Gold mining contamination 150 years on: Using spatial analysis to identify ‘hotspots’ for a bioaccumulation study
David Massoglia 1, Fatima Basie 2, Chris Garland 1
1. EPA Victoria, Macedon, VIC, Australia
2. School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
Gold mining in Victoria began during the 1850s gold rush and continues to this day. Alluvial gold was initially found using basic panning techniques, however techniques quickly progressed to mining tumbled gold deposits, motivating the need for new extraction methods. As a result, two environmental pollutants emerged: mercury and arsenic. EPA Victoria is leading a project to identify ‘hotspots’ of freshwater stream contamination occurring on multiple scales as a result of Victoria’s past gold mining activities. Our adopted approach has been to spatially analyse gold mining data in conjunction with water quality, soil type, geology and hydrology to determine areas of concern. In addition to spatial analysis, intelligence from Catchment Management Authorities has influenced the identification of ‘hotspots’. Our analysis shows some of the worst affected areas fall within the tribal boundaries of the Gadjada warrung and Wada warrung in the west of the state, and the Minjil and Minjil-Warrego in the east. This information will be used in catchment management and potential remediation works.

Our ‘hotspot’ analysis has now guided the selection of a series of field sampling sites for mercury and arsenic. Environmental samples (water, sediment, soil) from control and impact sites around former gold mine locations provide a current context for conditions. Bioaccumulation is also examined through the analysis of tissue from the common yabby Cherax destructor. Capturing data of this species make it a suitable bioindicator and additionally it provides information for health authorities, given C. destructor is commonly consumed by recreational fishers.

On the development of a new weighted average biotic index of water quality for Singapore’s freshwater reservoirs
Yukata Bhagat 1, Esther Clewis 1, Yong Tze Ho 1, Marta Boix Canadell 1
1. National University of Singapore, Singapore
In Southeast Asia, there is a growing concern for monitoring water quality not just from the standpoint of municipal water management but also from an ecological health perspective. Historically, the biggest challenge in developing biotic indices for tropical systems has been the dearth of information on taxonomic composition and faunal sensitivities to local stressors. This led to the inception of a long term biomonitoring project in Singapore, geared towards collecting comprehensive biological and physico-chemical data from all 17 freshwater reservoirs. A previously developed benthic quality index was recently modified based on the addition of newly acquired benthic invertebrate and water quality data collected from 13 reservoirs in 2011-2013. In total, 68 taxonomic groups were sampled represented by over 243,000 specimens. We employed non-linear generalized additive models to evaluate response curves of each taxonomic group against organic enrichment parameters. This was followed by a weighted average approach to calculate tolerance weights for each taxonomic group resulting in a single index score. A range of indices were derived representing various combinations of organic enrichment parameters, including chlorophyll a, turbidity, dissolved oxygen, phosphorus and nitrogen. Each index was evaluated against respective environmental drivers using a combination of predictive methods. Further steps in the analysis will explore relationships between each index and a composite stressor to determine the suitability of the index in reflecting a gradient of organic pollution.

Oral abstracts
Oral abstracts

How do we assess the health of rivers when they are dry? – Solutions using a novel approach

Alisha L Steward1,2, Jonathan C Marshall1,3, Peter Negus4, Sara Clifford5, Catherine Dent6

1. Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
2. Department of Science, Information Technology, Innovation and the Arts, Queensland Government, Brisbane, QLD, Australia
3. Rivers and streams that dry up are found on every continent, and can form a large proportion of river networks. When they are dry, traditional indicators of river health, such as aquatic macroinvertebrates, fish or water quality, cannot be sampled. Dry river beds can be the ‘typical’ state of many temporary rivers; however, the ecological health of these habitats is rarely, if at all, assessed in monitoring programs. Aquatic indicators can and have been used to assess wetted habitats, but currently no known terrestrial indicators have been developed or are in use to assess dry river health. A novel solution to assessing rivers when they are dry could be to use terrestrial biota as indicators. We trialled the use of terrestrial invertebrates as indicators of dry river health in the Cooper Creek catchment - a large, dryland river system in Central Australia - and found that terrestrial invertebrate communities respond to a gradient of disturbance, based on land cover. Our aim for this study was to apply the findings of the Cooper Creek trial to the assessment of the post-mining condition of the Murray-Darling Basin. Our results were validated and terrestrial assessments were successful in identifying impacted sites.

We conclude that terrestrial invertebrates are appropriate indicators of dry river health, in the same way that indicators such as aquatic macroinvertebrates are traditionally used to assess river health. These indicators of dry and wet habitats could be combined to provide a holistic assessment of the condition of temporary river ecosystems.

Quantifying changes in tropical wetland vegetation using time series high resolution satellite imagery

Tim Whiteside, Renee Bartolo

The Magela Creek floodplain within Kakadu National Park in northern Australia and its biodiversity are recognised through listing by the Ramsar Convention on Wetlands. The wetlands have been identified as being at risk from a number of sources, chiefly the landscape-scale risks of weeds, feral animals, fire and climate change. In addition, the Magela Creek floodplain is a downstream receiving environment for the Ranger uranium mine. Off-site monitoring of this area will become increasingly important in the years following mine closure and rehabilitation. Vegetation within the wetland is spatially and temporally variable and, therefore, mapping and monitoring wetland vegetation is required at scales that can detect this variability. The vegetation communities within the floodplain were mapped using multispectral WorldView-2 satellite data acquired for the early dry seasons for four years following mine closure and rehabilitation. Vegetation within the wetland is spatially and temporally variable and, therefore, mapping and monitoring wetland vegetation is required at scales that can detect this variability. The vegetation communities within the floodplain were mapped using multispectral WorldView-2 satellite data acquired for the early dry seasons for four consecutive years 2012-2013. The four final maps each consisted of 11 vegetation community classes. Change analysis indicated that for much of the floodplain community change was minimal; however some areas change in community composition each year. Most of the change was attributable to the varying depths and extent of water associated with seasonality and inter-annual rainfall variability, while some change may be attributed to the spread of weeds and to fire disturbance. Mapping the vegetation’s spatial and temporal variation is now an integral to the establishment of an ongoing off-site landscape remote sensing monitoring program for the mine.

Victorian Fishways - past, present, future

Justin O'Connor1,2, Greg Woodward1

1. Department of Environment and Primary Industries, Heidelberg, VIC, Australia
2. Water and Natural Resources Division, Department of Environment and Primary Industries, Melbourne, Victoria, Australia

A recent review of fishways in Victoria found that a significant number fishways are not operating efficiently due largely to there being no standard fishway design criteria or requirements for performance review. The recently released Victorian Waterway Management Strategy provides the framework for government, in partnership with the community, to maintain or improve the condition of rivers, streams and wetlands so that they can continue to provide environmental, social, cultural and economic values for all Victorians and includes actions specifically aimed at fishway management in Victoria. This presentation discusses the history and future of fishway management in the context of the policy and actions outlined in the Strategy. Actions and approaches to achieve these outcomes include guidelines outlining performance, operational and maintenance requirements and a workshop aimed at sharing experiences around fishways in Victoria and exploring ways to deliver better fishways.

A multi-antenna passive integrated transponder (PIT) tag array improves fishway passage assessments in a vertical slot fishway

Kris S Pitman1, David T Roberts2, Karl Pomorin3, Andrew Berghuis4

1. Pitman Research and Consulting, Landsborough, QLD, Australia
2. Seqwater, Brisbane, QLD, Australia
3. Karltn, Melbourne, VIC, Australia
4. Aquatic Biopassage Services, Bundaberg, QLD, Australia

A passive integrated transponder (PIT) antenna array was used to assess fish passage through the Bromelton Weir vertical slot fishway, located on the Logan River, south east Queensland. The fishway constructed in 1996 is 72m long, has a 3.2m elevation, a maximum slot velocity of 1.4m/second and has a 180° turn 1/3 along its length. The PIT array installed in 2011 (Kartek Model KUK5000) comprises three antennas, located in the 3rd, 19th and 32nd cells of the fishway. Fish >100mm were tagged at various locations along the Logan River system with 23mm, 9mm and 8mm PIT tags. Fish movement was highly seasonal with 82% of fish detections being recorded in summer, 12% in spring, 5% in autumn and only 0.5% in winter. Six of the eight tagged species successfully ascended the fishway and overall passage success was high (range 66% – 100%). Average passage duration was variable between species, the slowest being eel (fetal carcase) (9.2 hr) the fastest, sea mullet (0.35 hr). Total passage times also varied between all species for example, freshwater mullet ranging between 0.05 hr and 1.45 hrs; long finned eel between 0.16 hr and 9.13 hrs. The use of three antennas provides information about species characteristics, unsuccessful attempts and other behavioral information that trapping alone, or fewer antennas could provide. Despite some individual fish having slow ascent times, overall this study confirms the vertical slot fishway design at Bromelton Weir is effective for the majority of larger bodied fish species in the Logan River.

Defining downstream fish passage guidelines for the protection of fish in the Murray-Darling Basin

Craig A Boyd1, Wayne Robinson2, Anna Navarro1

1. NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, Australia
2. NSW Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia

Within the Murray-Darling Basin (MDB) many species undertake extensive downstream migrations as eggs, larvae, juveniles or adults and passage through river infrastructure has been shown to impact on their survival. The relative contribution that different stressors (such as rapid decompression and fluid shear) make to overall injury and mortality remains poorly understood, and this in turn makes it difficult to assess the risk associated with infrastructure projects or to develop engineering and operation guidelines to manage the downstream fish passage risks.

This presentation details laboratory experiments that were used to determine the tolerance of various species and life stages of fish from the MDB to rapid decompression (in hypo/hyperbaric chambers) and elevated fluid shear (in a shear flume). Fish were exposed over a wide range of conditions so that the probability of injury and/or mortality could be modeled. In doing this, the ultimate goal was to determine critical thresholds for injury and mortality and develop criteria that if applied would protect downstream migrating fish at river infrastructure. We present criteria in an attempt to better inform policy relating to the development and management of micro-hydropower and irrigation infrastructure for the protection of downstream migrating fish.

Mulloway movement within the Glenelg River Estuary within Southwest Victoria

Jason Lischke1, Paul Moloney2

1. Arthur Rylah Institute, HEIDELBERG, VIC, Australia
2. Aquatic Biopassage Services, Bundaberg, QLD, Australia

There is limited knowledge of movement patterns of Mulloway (Argyrosomus japonicus) within, entering or exiting estuaries. Understanding the movements of fish in relation to changes in the environment is a critical first step in managing estuarine ecosystems to support fish and ultimately forms the basis for future research programs on biodiversity habitat linkages such as spatial recruitment. Twenty-eight Mulloway were acoustically tagged within the Glenelg River estuary in South-west Victoria and were tracked via twenty receivers placed throughout the estuary. Estuarine attributes such as salinity, freshwater flows and mouth condition (open or closed) were also measured so that fish movements could be examined with respect to these parameters. Twenty two of the tagged fish provided movement data. Increased flow discharge triggered exiting the system or movements towards the river mouth. The periods from November to January was a “hot” period for Mulloway exiting the estuary, with exiting also correlated with days when flow was higher. Both season and flow conditions were more variable when Mulloway re-entered the system with no specific driver evident. Four Mulloway exited the Glenelg estuary and moved to the Murray Mouth (approx. 400 kilometres away), with two of these subsequently returning to the Glenelg estuary. The extreme angling pressure on Mulloway within the Glenelg estuary is also highlighted. Fifteen of the 22 (68%) tagged Mulloway were captured by recreational anglers, with only one of these fish being released. This data contrasts with the previously documented higher release rates of Mulloway within the Glenelg estuary.
Revitalising Australia’s Estuaries

Colin Creighton¹

1. FRDC, Deakin West, ACT, Australia

Colin Creighton, Fisheries Research and Development Corporation

Recognisation of the ecological role of shellfish reefs and the major declines and ongoing threats to these habitats worldwide has stimulated major community/government/industry partnership programs aimed at their protection, enhancement and restoration, most notably along the U.S. east coast. Shellfish reefs are defined as essential fish habitats in the U.S. In Australia there is also a history of decline, loss and degradation of wild shellfish habitats, although there has been limited investigation of the value of these habitats to fish or for provision of other ecosystem services, or efforts to restore wild shellfish populations in Australia.

Natural oyster (Ostrea angasi) and blue mussel (Mytilus edulis) beds were once ecologically important features of Port Phillip Bay, recognised as important fish habitat by commercial and recreational fishers. While these two shellfish species are still common in Port Phillip Bay, they no longer occur on sediment areas in the densities or areal coverage that could be considered as ‘functional habitats’ or ‘ecosystem engineers’. This presentation discusses some history of loss and the current opportunity and prospects for re-establishing lost shellfish beds in Port Phillip Bay, with benefits to fish and fisheries.

Shellfish – more than just an entrée: history and potential for restoration of the lost shellfish beds of Port Phillip Bay

Paul Hamer¹

1. Department of Environment and Primary Industries, Queenscliff, VIC, Australia

Threats to the Great Barrier Reef World Heritage Area concomitant with an expanding coastal urban and industrial seascape

Nathan Waltham¹, Marcus Sheaves¹

1. James Cook University, Douglas, QLD, Australia

Conservation and resilience of the Great Barrier Reef World Heritage Area has recently come into media focus following correspondence from UNESCO calling government agencies in Australia to prepare a strategic plan addressing exactly how threats to the Great Barrier Reef have been part of the National Land and Water Resources Audit. Generally, the bigger the catchment and floodplain, the more degraded was the estuary and the more altered were the processes, flows and fluxes that characterise estuarine ecology. Urban, industrial and most importantly, agricultural development have been the fundamental causes of degradation of Australia’s estuaries and embayments. This degradation has had major impacts on biodiversity, commercial and recreational fishing and indeed the Australian lifestyle. Revitalising Australia’s Estuaries is a business case that builds on expertise and knowledge across Australia and provides an opportunity of returns for repair, estimates cost of repair and then through case studies demonstrates that an Australia wide investment of $330 million into estuarine rehabilitation will be returned in less than 5 years. This represents an outstanding return on investment, possibly far greater than most of Australia’s previous environmental repair initiatives and will clear outcomes across the Australian food, lifestyle and services economies. Following a summary of Revitalising Australia’s Estuaries this presentation will speculate on next steps and the necessary paradigm shifts in our thinking as scientists and managers if we are to once again have productive, healthy estuaries and embayments.

The effects of drought and anthropogenic activities on ecosystem state cycling and the fish fauna of Africa’s largest estuarine lake

D P Cyrus¹, L Vivier³

1. Coastal Research Unit of Zululand, University of Zululand, South Africa

Lake St Lucia, on the East Coast of southern Africa, is a major nursery area for juvenile marine fish and prawns. It comprises 80% of the estuarine area of the Province of KwaZulu-Natal and more than 50% of that of South Africa. In June 2002 drought resulted in mouth closure and hypersaline conditions followed reaching the highest on record (>200‰) while the lake level dropped to <10% of its system. 325km².

Anthropogenic activities relating to the separation of the Miombo River from St Lucia over 50 years ago appear to be the root cause of the extremes reached. With the drought over and the mouth still closed 14 years later a semi-permanent connection between the two was established in July 2012. This resulted in a significant volume of freshwater entering St Lucia causing the lower part of the system to become fresh. It also caused a reverse salinity gradient to establish which ranged from 1 at the mouth to 15% in the northern part of the lake. A switch in ecosystem functioning, from the hypersaline state that typically ranges between 65 and 120‰ (and higher during the most recent event) to a freshwater state with salinities ranging from 0 to 12‰, was also initiated.

This paper reviews ecosystem state cycling in St Lucia and the changes that have occurred over the past 14 years as well as the impacts that the hypersaline period has had on the fish fauna.

Fifty shades of flow: catadromous fish migration in a regulated river

Doug Harding¹, David Roberts³, Tess Mullins¹, Ross Dwyer¹, Richard Pillans³

1. Natural Resources and Mines, Queensland Government, Woolloongabba, QLD, Australia

Lake St Lucia, on the East Coast of southern Africa, is a major nursery area for juvenile marine fish and prawns. It comprises 80% of the estuarine area of the Province of KwaZulu-Natal and more than 50% of that of South Africa. In June 2002 drought resulted in mouth closure and hypersaline conditions followed reaching the highest on record (>200‰) while the lake level dropped to <10% of its system. 325km².

Anthropogenic activities relating to the separation of the Miombo River from St Lucia over 50 years ago appear to be the root cause of the extremes reached. With the drought over and the mouth still closed 14 years later a semi-permanent connection between the two was established in July 2012. This resulted in a significant volume of freshwater entering St Lucia causing the lower part of the system to become fresh. It also caused a reverse salinity gradient to establish which ranged from 1 at the mouth to 15% in the northern part of the lake. A switch in ecosystem functioning, from the hypersaline state that typically ranges between 65 and 120‰ (and higher during the most recent event) to a freshwater state with salinities ranging from 0 to 12‰, was also initiated.

This paper reviews ecosystem state cycling in St Lucia and the changes that have occurred over the past 14 years as well as the impacts that the hypersaline period has had on the fish fauna.

Recognition of the ecological role of shellfish reefs and the major declines and ongoing threats to these habitats worldwide has stimulated major community/government/industry partnership programs aimed at their protection, enhancement and restoration, most notably along the U.S. east coast. Shellfish reefs are defined as essential fish habitats in the U.S. In Australia there is also a history of decline, loss and degradation of wild shellfish habitats, although there has been limited investigation of the value of these habitats to fish or for provision of other ecosystem services, or efforts to restore wild shellfish populations in Australia.

Natural oyster (Ostrea angasi) and blue mussel (Mytilus edulis) beds were once ecologically important features of Port Phillip Bay, recognised as important fish habitat by commercial and recreational fishers. While these two shellfish species are still common in Port Phillip Bay, they no longer occur on sediment areas in the densities or areal coverage that could be considered as ‘functional habitats’ or ‘ecosystem engineers’. This presentation discusses some history of loss and the current opportunity and prospects for re-establishing lost shellfish beds in Port Phillip Bay, with benefits to fish and fisheries.

Coastal floodplains, wetlands and weeds: a bigger problem than commonly envisaged

Paul I Boon¹, Tom Hurst²

1. Victoria University (Footscray Park campus), MELBOURNE, VIC, Australia

It is often assumed that the physico-chemical environment of coastal wetlands is so severe that they are relatively immune to invasion by troublesome exotic plant species. This assumption is implicit in almost all recent published reviews of threats facing mangroves, coastal saltmarshes and other types of brackish-water coastal wetland, where a limited range of vascular plant taxa, often focusing on Spartina, are invoked as the major species of concern. Even though the weed flora of southern Australia is derived largely from agriculture and horticulture, neither of which includes many species tolerant of variable saline environments, a detailed State-wide assessment of threats to Victorian coastal wetlands indicated that weeds were the third most pervasive threat, after land reclamation and grazing by domestic animals. Taxa of most concern were Lophysopum ponticum, Parapholis incurva, Hordeum marimum, and Juncus acutus. Of these, Tall Wheat Grass, L. ponticum, until recently widely promoted by government agencies as a salt-tolerant pasture grass, is the most serious invader of upper saltmarsh in Victoria because of its very broad ecological amplitude and robust life form. We assessed the effectiveness of various control measures, including slashing and various herbicides, in controlling L. ponticum infestations and their side-effects on adjacent wetland communities. A nominally grass-specific herbicide widely used for Spartina control, Fluazifop®, was ineffective in controlling L. ponticum. The broad-spectrum herbicide glyphosate was more effective in controlling L. ponticum, but had severe effects on some native plant species. It seems that controlling weeds in coastal wetlands remains difficult and problematic.
Oral abstracts

Environmental Outcomes – Can We Substitute Infrastructure For Environmental Water?

Steve Nicol

1. Victorian Department of Environment and Primary Industries, East Melbourne, VIC, Australia

In 2002, a landmark decision was made to invest $700 million (AUD) to recover 500 gigalitres of water to restore the iconic River Murray south-eastern Australia. A cornerstone of this initiative was the construction of pumps, regulators and levees to deliver water onto the floodplain.

We are now embarking on a more ambitious $12+ billion restoration program to recover an additional 2750GL. Building on the success of the River Murray initiative and recognising the potentially significant impacts to rural communities, it has been agreed that the target can be reduced by up to 65GL, where equivalent environmental outcomes can be achieved through the use of works.

Can this be done? The political stakes are high – livelihoods can be dramatically affected and lots of cash is on the table. The scientific challenge is immense – the method to assess the ‘equivalence’ must be defensible and yet there is limited experience in the use of large scale works to base it on. This paper explores the lessons learnt thus far and the technical and political challenges we face as we embark on the larger river restoration project in Australian history.

An Introduction to the Murray-Darling Basin Environmental Water Knowledge and Research Project

Sharon Rixon, Ben Gawne, Christine Reid

1. MDB FR, Wodonga, VIC, Australia

The Environmental Water Knowledge and Research Project (EWRK) project has been established by the Australian Government to provide information to support implementation of the Basin Plan. The purpose of EWRK is to improve identification and reporting on the outcomes of environmental flows including the way that these outcomes may be influenced by other threats and stressors. The project will achieve this through generation of new knowledge, development of decision support tools and communication to support achievement of Basin Plan objectives. The Murray-Darling Freshwater Research Centre (MDBFR) has been established as an organisation that will work in collaboration with other researchers. The project will comprise two phases; the first phase is a planning phase that will identify the key questions and approach. The second phase will undertake research and management tool development. It is anticipated that the project will be undertaken at four sites (including a Queensland floodplain vegetation research site) that will be selected during the first year of the project on the basis of critical research questions. This presentation will describe: 1) key relationships between the MDB EWRK project and other environmental flow and research activities 2) the role of MDB EWRK in the adaptive management of environmental water and 3) Phase 1 of the MDB EWRK project and opportunities for researchers to become involved.

Regulated recruitment: native and alien fish responses to widespread floodplain inundation in the Macquarie Marshes, arid-Australia.urban and industrial seaside

Tom Rayner, Richard Kingsford, Iain Suthers, Derek Cruz

1. Charles Darwin University, Nightcliff, NT, Australia

2. The University of New South Wales, Sydney, NSW, Australia

Rivers and wetland ecosystems are degraded by diversions of water upstream. In response, governments have reallocated water to fisheries to mimic natural inundation of habitats known to drive booms in native freshwater fish production. Individual flow events allow the influences of various factors on the ecological outcomes of restoration efforts to be evaluated, in order to improve ongoing adaptive management. This study investigated the population size and recruitment responses of seven native and three alien fish species to widespread floodplain inundation at 15 sites across the Macquarie Marshes, a regulated wetland in Australia’s Murray Darling Basin. Flooding during late winter, when water temperatures were 4 to 12.6 degrees C below the spawning threshold for native fish species present in the system, promoted reproduction and recruitment by alien species, which were significantly more abundant than native species after flooding. Fish assemblage structure also differed significantly between main-channel and floodplain habitats, with macrophytes, pH, emergent vegetation, flow velocity and small wood debris accounting for significantly more abundance than native species after flooding. Fish assemblage structure also differed significantly between main-channel and floodplain habitats, with macrophytes, pH, emergent vegetation, flow velocity and small wood debris accounting for 59% of spatio-temporal variation in fish assemblage structure. Significant correlations were identified between the length of spawning window and post-flood abundance of young of year and recruit size classes in the most abundant alien and native fish species.

Future environmental flows, particularly those that inundate floodplain habitats, need to be delivered in light of the confounding effects of flow-temperature coupling and the lower spawning temperature thresholds of alien species.

Spatio-temporal variability of native flow-cued spawning fish larvae in association to environmental water in the lower River Murray

Juan P Llorente, Offeng Ye

1. SARU Aquatic Sciences, West Beach, SA, Australia

Water has become a precious resource in many parts of the world and its informed management is essential to a successful balance between human and environmental needs. As part of achieving this balance environmental flows have received much attention, but little rigorous biological evaluation. However reliably investigating biological responses to find causal links to E-flows has proven to be a challenge. The monitoring of larval fish abundance over eight years in the lower River Murray under a broad range of flood scenarios, including the Millennium drought, natural flood and within channel flows with delivery of E-flows, provides reliable information that associate E-flows to the presence of larvae of flow-cued spawning native fish. Our results show that the delivery of a flow pulse of appropriate magnitude and timing can prolong the period of time over which larvae of flow-cued spawning species are found in the lower River Murray. The temporal extension of early life history stages in the water column increases total abundance of larvae and potentially recruitment success. The results also highlight greater abundances of larval in the gorge than in flood plain and macrophyte stop motion of larval movement and large spatial scale in the monitoring of E-flows. Identifying causal links of the observed patterns and relating them to ecological processes and function is essential for E-flow management in the lower River Murray and merits further research.

Testing/evaluating the use of fish habitat availability for monitoring the anthropogenic impact on dry season flows in the Katherine River, tropical Australia

Jaye Brim-Box, Simon Townsend, Alison King, Mark Kennard

1. Aquatic Health Unit, Department of Land Resource Management, Alice Springs, NT, Australia

2. Aquatic Health Unit, Department of Land Resource Management, Darwin, NT, Australia

3. Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia

4. Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia

We developed Habitat Suitability Curves (HSC) for 26 fish species that occur in the Katherine River in the top end of the Northern Territory. These models, based on depth and velocity, were then used to investigate relationships between optimal habitat availability and dry-season environmental flows. As expected, the HSC performed best with species that showed strong fidelity to particular depths and velocities (e.g., species found in shallow, swift habitats). For a sub-set of species we used a two-dimensional depth averaged finite element hydrodynamics model, developed for a 9 km reach of the Katherine River, to examine changes in optimal habitat availability over 16 modeled discharge scenarios. Not surprisingly, the total optimal habitat available varied greatly between species and discharge scenarios. We then tested the relationship between habitat availability and species abundance for an eight-year period to gain insight into the strength of habitat availability as a driver of end-of-dry season abundance. Implications for monitoring the anthropogenic impact on dry-season flows are discussed.

Environmental flows for Australian lungfish: From push-net to release valve

Tom Espinosa, Andrew McDougall, Sharon Marshall

1. Department of Natural Resources and Mines, Bundaberg, QLD, Australia

Finding the balance between species water requirements and maintaining water security is challenging for water managers. We provide a case study about the science that has led to improved water resource management and targeted environmental flow strategies for Australian lungfish. This threatened and iconic species was prioritised for assessment based on previous studies suggesting a critical link between spawning and river flows/aquatic macrophytes. A 6-year monitoring and research project was undertaken in the Burnett River, Queensland, which focused on hydraulic habitat requirements for the species and impacts of water impoundments. Firstly, the study investigated the role of stream flow in riverine and impounded habitats, and its effects on lungfish spawning (where eggs were collected using push nets). Lungfish spawning was found to be a seasonal strategy, reliant on variable low-flow and dense macrophyte, within shallow riverine habitat. Having established these requirements, the second part of the study investigated spawning habitat availability in riverine and impounded reaches subject to current water management. Impoundment operation was found to substantially decrease the availability of spawning habitat for lungfish as water level fluctuations led to inundation/desication of aquatic macrophytes. However, erosion releases from dams were found to be of a suitable magnitude to cue spawning. Finally, the study assessed the effectiveness of current water resource management and proposed alternative strategies for ecologically suitable management. Redefining the focus of management from storage operations, to providing releases for the downstream environment was a key recommendation which culminated in legislated revised environmental flow strategies.

Applications 29: 1215-1225 DOI: 10.1002/rra.2607

Oral abstracts

A coordinated national data collection for recreational fishing in Australia: what’s changed since the last national survey?

Shane Griffiths1, Phil Salihqvit2, Jeremy Lyle3, Bill Venables4

1. CSIRO, Brisbane, QLD, Australia
2. ABARES, Canberra
3. IMAS, Hobart

A national project funded by the Commonwealth Government’s Recreational Fishing Industry Development Strategy (RFIDS) was undertaken to provide an up-to-date picture of recreational fishing in Australia since the last national survey in 2000/01. The project was able to provide an improved understanding of the available datasets, and data deficiencies, relating to recreational fishing in Australia through the successful collaboration of researchers and fishery managers from state, territory and Commonwealth agencies and recreational fishery groups. The project identified and prioritised recreational species at the national level. A quantitative assessment using statistical modeling demonstrated the available datasets are too fragmented in space and time to produce reliable national estimates, indicating that a dedicated national survey network is required. Revised national population estimates of some species were developed, and catch of key recreationally-important species provided an up-to-date picture of recreational fisheries nationally, indicating that policies at the national level. A quantitative assessment using statistical modeling demonstrated the available datasets are too fragmented in space and time to produce reliable national estimates, indicating that a dedicated national survey network is required. Revised national population estimates of some species were developed, and catch of key recreationally-important species provided an up-to-date picture of recreational fisheries nationally, indicating that policies at the national level. A quantitative assessment using statistical modeling demonstrated the available datasets are too fragmented in space and time to produce reliable national estimates, indicating that a dedicated national survey network is required. Revised national population estimates of some species were developed, and catch of key recreationally-important species provided an up-to-date picture of recreational fisheries nationally, indicating that policies at the national level. A quantitative assessment using statistical modeling demonstrated the available datasets are too fragmented in space and time to produce reliable national estimates, indicating that a dedicated national survey network is required. Revised national population estimates of some species were developed, and catch of key recreationally-important species provided an up-to-date picture of recreational fisheries nationally, indicating that policies at the national level. A quantitative assessment using statistical modeling demonstrated the available datasets are too fragmented in space and time to produce reliable national estimates, indicating that a dedicated national survey network is required. Revised national population estimates of some species were developed, and catch of key recreationally-important species provided an up-to-date picture of recreational fisheries nationally, indicating that policies at the national level.

A social license to care: the challenges of involving recreational fishers in fish habitat rehabilitation

Liz Baker1, Jodi Frawley2, Craig Copeland3

1. NSW Fisheries, Wollongbar, NSW, Australia
2. Queensland University of Technology, Brisbane, QLD

This paper explores the challenges associated with engaging Australian recreational fishers in the environmental issues that directly affect the viability of their sport but which are divisive and contentious within the fishing community. The impact on fisheries productivity of habitat loss and degradation is increasingly well documented. What to do about it and whether the fishers are interested is less well understood. Fishers participate in a sport that is dependent on healthy aquatic environments and they could play a significant stewardship role. In other parts of the world, they are a driving force for environmental conservation and rehabilitation. Fishers fall into two quite distinct motivational profiles, reflecting the fact that identification as a recreational fisher is as much about the enjoyment and anticipation of going fishing as it is about catching a fish. However, the natural environment is notable for its absence in the mainstream recreational fishing media, especially as it relates to its importance for fish, and in some of the public relations materials with ‘green’ groups. The task with which we are engaged is to effect a cultural change and to communicate the stories from fishers who are actively engaged in habitat rehabilitation in ways that supports this. Reflection on our practice leads us back to basics: to communicate effectively with fishers about the environmental issues affecting the sustainability of their sport we need to work from underlying values, have a credible voice that is ‘of the community’ and facilitate the voice of change from within the community.

Meeting the requirement of recreational fisheries data for Integrated Fisheries Management

Karin Ryan1, Fiona Crowe1, Anthony Hart1, Eva Lai1, Claire Smallwood1, Fabian Trininnie1, Brent Wise1, Norm Hall1

1. Department of Fisheries, WA Fisheries and Marine Research Laboratories, Hillarys, WA

Catch allocation among fishing sectors requires credible data for decision-making, allocation and management. In 2004, implementation of the Fisheries Management (FMM) policy was adopted in Western Australia. Three multi-sector sub-areas have been allocated: Western Rock Lobster (WRL) (Panulirus cygnus) with allocations of 95% commercial, 5% recreational and 11 customary; Roe’s abalone (Halitosis roei) with allocations of 36% commercial, 41% recreational and 23% customary; and West Coast Demersal Scallop (WDSS) with allocations of 64% commercial and 36% recreational. While total commercial catch are obtained from statutory return obligations, recreational catch estimates depend upon the nature of the fishery and spatial and temporal scales of the resource. The WRL recreational fishery has a specific fishing licence (~40,000 annually), and covers large spatial and temporal scales. Mail surveys supplemented with occasional phone surveys have provided a cost effective method of monitoring this fishery over 27 years. The Roe’s abalone recreational fishery has a specific fishing licence (~15,000 annually) and operates over a limited temporal scale allowing data collection from onsite surveys. The WDSS had no specific licence until the recreational Fishing from Boat licence (~15,000 annually) and catch data was not collected.

Reflection on our practice leads us back to basics: to communicate effectively with fishers about the environmental issues affecting the sustainability of their sport we need to work from underlying values, have a credible voice that is ‘of the community’ and facilitate the voice of change from within the community.

Assessing the effectiveness of harvest tags in managing the recreational catch of snapper in Shark Bay, Western Australia

Gary Jackson1, Karina Ryan1, Kenneth Pollock2, Jeremy Lyle3

1. Department of Fisheries WA, North Beach, WA, Australia
2. Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
3. Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

Harvest tags are commonly used to regulate hunting however their application in recreational fisheries is rare. Stocks of snapper in the inner gulf of Shark Bay, Western Australia, support an important recreational boat-based fishery. Following research that showed all three stocks were depleted, stricter management was progressively introduced between 1998 and 2003. In 2003, a Total Allowable Catch (TAC) was set for each stock for the first time and different combinations of measures implemented to matches with the respective TACs. These included a novel harvest tag system in the Freycinet Estuary, where a limited number of tags were made available each year via a lottery based system, to limit the recreational catch within a TAC of 5 tonnes. The effectiveness of the harvest tags was evaluated, based on a series of phone interviews conducted with all tag recipients each year over three consecutive years (2011-2013), in terms of capacity to limit the recreational catch, levels of compliance, and acceptance by fishers. These surveys indicated that 76% of tag recipients in Freycinet Estuary, more than 50% thought that illegal fishing activity was not significant and importantly, more than 80% of those interviewed considered harvest tags to be an effective measure for managing the recreational snapper catch. This study provides important information for recreational fishery managers elsewhere where harvest tags may have potential application with similar recreational fisheries that are based on highly vulnerable fish stocks.

Sand flathead in Port Phillip Bay – story of a recreational fishery in decline

Alastair Hirst1

1. Deakin University, Warr Ponds, VIC, Australia

Sand flathead (Platycephalus bassensis) was once both a significant commercial fishery and the largest recreational fishery in Port Phillip Bay. Between 2000 and 2010 sand flathead stocks declined by 87% in Port Phillip Bay. The cause/s of this decline are unknown, and attempts to rebuild stocks are unlikely to be successful without identifying and addressing the cause/s as part of any management response. This project drew on a range of data sources to summarize what is known about the current status of the fishery in Port Phillip Bay, the probable causes of the decline, and the prospects for recovery. There was little evidence that fishing pressure contributed to the decline of sand flathead stocks, or that the population was overfished during this period. Fisheries exploitation rates remained relatively stable between 2000/01 and 2006/07, despite a significant decline in the overall stock biomass due to a three-fold reduction in the total catch over this period. By 2007, there was substantial evidence that the decline was linked to environmental changes. Environmental impacts were investigated by examining changes in sand flathead recruitment and the environmental drivers of recruitment, growth and diet. Sand flathead recruitment in Port Phillip Bay was characterised by very high recruitment pulses in the late 1980s/early 1990s, but little recruitment from 1997 onwards, coinciding with a period of prolonged drought in southern Australia from 1997–2009. The prospects for recovery in the short-to-medium term for this fishery appear positive, but less optimistic for the longer-term due to expected climatic changes.

The Changing Character of Recreational Fishing

Andy Moore1, Sean Tracey2

1. ABARES, Canberra, ACT, Australia
2. IMAS, UTAS, Hobart, TAS, Australia

The nature and landscape of recreational angling is changing in Australia. Using social media, anglers are developing a more coordinated and influential voice on fisheries management issues. This has included a more collaborative relationship with conservation groups on emerging common interests, much as has happened in the US and Canada. As a result, the recreational sector is having increasing influence on key fishery policies and management decisions. A measure of this influence is the Federal election commitment to conduct regular national surveys of recreational fishing. Recreational sector calls for such surveys have been increasingly associated with calls for more secure resource sharing arrangements between the commercial and recreational sectors. The sector is also expected increasing social licence for commercial activities which they perceive to affect fisheries, and want more of a say in how angling licence revenues are spent. Some species and areas have already been set aside only for recreational anglers, and resource-sharing is an important issue for stocks such as southern bluefin tuna. This talk will look at recent examples of some of these important changes; how recreational survey approaches have evolved; how recreational participation and key fishing areas and stocks can be measured; how social and economic impacts can most effectively be evaluated; and how recreational anglers can best contribute to a better understanding of their sector.
Oral abstracts

Making sense of all the monitoring. Why the synthesis of monitoring information is a key step in adaptive management and how it is being done for The Living Murray initiative

David B Hohnberg1, Ben Gawne, Stuart Little1, Greg Raisin1

1. Murray-Darling Basin Authority, Canberra City, ACT, Australia

The adaptive management of rivers occurs over a variety of scales from the management of individual wetlands, through large icons to the river as a whole. As a result, consistent management or a river system can require gathering large amounts of information over time on discrete variables. These can be collected at a variety of scales in an effort to both identify progress toward objectives and prioritise future actions. Specific questions about cause and effect may be answered, translating the information into a form that can be used in the adaptive management processes to optimise future actions has historically presented a challenge.

Monitoring programs that assess a number of different variables over a range of temporal and spatial scales, face a particular challenge in integrating the full suite of monitoring information into a clear story about what the management actions have achieved. An example of this is the monitoring program for The Living Murray Initiative. Monitoring in The Living Murray has a focus on monitoring fish, downstream environmental processes and the Living Murray Monitoring Program has recognised these feedbacks and synthesises the full range of data from multiple variables and temporal and spatial scales and has worked toward addressing them. This talk will discuss these challenges and how The Living Murray has begun addressing them. In particular, how it developed an annual synthesis report that makes sense of the full range of monitoring information along with hydrological and data from multiple climate information.

Setting and evaluating ecologically relevant water quality targets for the Great Barrier Reef – progress in the Burnett-Mary region

Emily Maher1, Geoff Park2, Anna Roberts3, Jon Brodie1

1. Burnett Mary Regional Group, Bundaberg, QLD, Australia
2. Natural Decisions, Bendigo
3. TropWater, Townsville

Understanding water quality impacts on natural resources, identifying pollutant sources, determining ecologically relevant targets to protect significant environmental assets is a complex and challenging endeavour. Furthermore, assessing the socio-economic and political costs of achieving these targets, including a realistic assessment of costs that can vary widely between, has rarely been tackled with success in Australia and overseas (Roberts et al, 2012). Nowhere is it more starkly evident than for the Great Barrier Reef (Brodie et al, 2009). Water Quality Improvement Plans (WQIPs) are being developed for river basins on the Great Barrier Reef (GBR) catchment. An acknowledged weakness of previous plans has been a lack of integrated bioeconomic assessment of the benefits and costs of achieving pollutant reduction targets.

BMDA’s work with Natural Decisions and TropWater to utilise robust, transparent evidence-based processes to develop a region wide WQIP. The development of the Burnett-Mary WQIP has focused on the development of ecologically relevant targets, which were evaluated through the application of a purpose-built bioeconomic model, based on detailed biophysical information available from the Australia to Reef paddock-scale and component scale modelling.

This information was used as an input to an integrated bioeconomic cost assessment using INFFER (Investment Framework for Environmental Resource Estimation). The method (INFFER) is a cost analysis to undertake integrated assessments of projects that aim to achieve environmental outcomes. Bioeconomic modelling analysis can inform the cost component of INFFER, particularly the costs associated with management practice changes on private land to achieve environmental benefits.

Despite these values, temporary streams are being degraded in many places, in part because their legal status is at best uncertain in many countries, meaning many are not considered in regulation, policy and management. In the US and in the EU their status is determined on a case by case basis. Australia is more inclusive and our approaches can guide other regions. To align policy with scientific thinking, temporary waterways should be recognised as part of the river network if they flow and connect to the network, and if they are habitat for obligate aquatic, biota or terrestrial biota unique to dry river beds.

To better implement water quality management in temporary waterways, there needs to be; (a) better mapping of temporary waterways; (b) they can be recognised by the presence of defined channel banks and fluvially sorted sediments; (b) better methods to measure and predict flow intermittency; (c) better biological indicators to monitor and assess their ecological condition. Cost to recognise and manage intermittently flowing rivers will be minimal and off by resulting economic benefits, especially where people critically depend upon them. This paper is based on Acuña et al., 2014, Science 343:1080-1081, with full acknowledgement of all co-authors.

Oral abstracts

Managing Inland NSW Aquatic Habitats – past, present and future planning tools

David Ward1

1. NSW Department or Primary Industries, Calala, NSW, Australia

Inland New South Wales Rivers are facing a gamut of issues with regards aquatic habitat management. Most of the inland rivers in New South Wales are already in a poor state of ecosystem health as reported in the Sustainable Rivers Audit and management issues have a crucial role in influencing the health of aquatic ecosystems and the region is currently under pressure from resource development for coal seam gas, coal and other extractive resources.

This presentation aims to review initiatives that the New South Wales Department of Primary Industries have been involved in within the planning process to maintain and or improve the management of aquatic habitats within New South Wales inland waterways. The suite of tools available include involvement on a local government level to map Key Fish Habitats for inclusion within council’s statutory planning document, the Local Environmental Plan (LEP) and inclusion of provisions within the LEP which specifically relate to development within or adjacent to Key Fish Habitats. Recently at a more regional strategic level, the synthesis and analysis of over 20 years of data from the Freshwater Fish Research Database has been the basis of developing aquatic biodiversity value maps to assist with the identification of high conservation value aquatic habitats when developing Regional Growth Plans and Strategic Regional Land Use Plans (SRULPs). These plans are designed to support sustainable growth and provide some certainty for resource development within inland New South Wales whilst recognising and protecting high value environmental assets.

Prioritizing management of dynamic threats in protected areas: a decision support tool for Kakadu National Park

Vanessa M Addis1, Smantana S Setterfield1, Sue Jackson2, Kelly Scheckers2, Michael Douglas1

1. Charles Darwin University, Darwin, NT, Australia
2. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
3. TropWater, Townsville, NT

Protected areas are a cornerstone in global conservation strategies. Constrained budgets for protected area management make it essential that protected area management plans take into account the heterogeneity of values, such as biodiversity and cultural sites, as well as dynamic threats. Furthermore, there is a growing interest in joint management arrangements of protected areas to better integrate conservation on Indigenous lands and allow for traditional resource uses. Therefore, better methods of accounting for complex objectives associated with these different types of management arrangements are needed.

We use Kakadu National Park, a world heritage site, as a case study and present a decision support tool designed specifically for Kakadu that integrates models of dynamic aquatic and cultural values and valued environmental and cultural values and evaluate the performance of different management strategies in a dynamic and uncertain future. We present three invasive weed management scenarios for Kakadu’s floodplains designed in collaboration with park staff and traditional owners which reflect different stakeholder values and priorities as well as real world constraints such as budget. For each scenario we evaluate the total costs of weed management and the benefits of management as the percentage lost or recovered of a range of biological and cultural assets. We discuss the feasibility of each scenario and contrasting benefits and efficiencies that they present.

Fish parasites: just another tool for water planners working on a shoestring budget

Susie Williams1, Rob Cossart2

1. Department of Water, KUNUNURRA, WA, Australia
2. Australian Rivers Institute, Griffith University, Nathan, QLD, Australia

There has been a proliferation of research into water planning in response to water reform in the past 5 years. Research has focused on reviewing water planning challenges, applying theoretical models and developing tools for planners. Much of this research has not adequately described the real-world complexity of water planning. Planning theory often describes a linear process from problem specification to minimal recognition of externalities. We have learnt that the only way to effectively engage in planning is by seeking opportunities to build on existing initiatives and responding to local concerns.

As part of a regional water planning process we visited a remote indigenous community at the edge of Lake Gregory in the Kimberley/WA. We visited the community to discuss water planning. We came away with a collaborative research program to study fish parasites infecting local fish.

This is an atypical response to a typical problem in water planning. The greatest water issue for people at Lake Gregory was ‘worms in their fish’. In addition, the community was embarking on Indigenous Protected Areas (IPA) planning which was their current focus of cultural and environmental planning; there was not much room for other planning.

In this case, we integrated water planning with IPA planning, addressed local issues through collaborative research and built capacity through tailored waterways education. These strategies were required to ensure that scarce regional capacity was strengthened and that our work respected existing planning effort and didn’t divert energy and focus. Above all, it was a necessary approach to engage community in water planning.

The global need to recognise and manage intermittently flowing rivers and streams

Jonathan Marshall1

1. Department of Science, Information Technology, Innovation and the Arts, BRISBANE, QLD, Australia

Temporary waterways are dominant in dryland river networks, and occur throughout the world. There is a growing scientific recognition of their importance. They support high biodiversity and provide ecosystem goods and services. They are important conduits for exchanges of aquatic biota or terrestrial biota unique to dry river beds.

Despite these values, temporary streams are being degraded in many places, in part because their legal status is at best uncertain in many countries, meaning many are not considered in regulation, policy and management. In the US and in the EU their status is determined on a case by case basis. Australia is more inclusive and our approaches can guide other regions. To align policy with scientific thinking, temporary waterways should be recognised as part of the river network if they flow and connect to the network, and if they are habitat for obligate aquatic biota or terrestrial biota unique to dry river beds.

To better implement water quality management in temporary waterways, there needs to be; (a) better mapping of temporary waterways; (b) they can be recognised by the presence of defined channel banks and fluvially sorted sediments; (b) better methods to measure and predict flow intermittency; (c) better biological indicators to monitor and assess their ecological condition. Cost to recognise and manage intermittently flowing rivers will be minimal and off by resulting economic benefits, especially where people critically depend upon them.
Oral abstracts

Murray-Darling Basin Plan – My Involvement and Experiences

Barron Hart

1. Murray Darling Basin Authority, Canberra, ACT
2. Water Science Pty Ltd, Echuca, Victoria
3. Monash University, Clayton, Victoria

It is interesting to look back over one's professional career and reflect on the twists and turns that lead to where one ended up. In this Lunghit Chapter lecture, I will spend some time in such a reflection of my career, and will seek to bring out some of the experiences that underpinned my appointment (as a scientist) in 2009 to the Board of the new Murray Darling Basin Authority. I will discuss the importance of keeping flexible your horizons, making the most of opportunities that will arise from time to time, recognising that there will be difficult career choices presented along the way (and, that fate will also be in the mix). Additionally, I will use my experience in the development of the Murray-Darling Basin Plan to discuss the role of science (particularly ecology and limnology) in the decision-making process involved in this major policy reform. Finally, I will make some personal reflection on key aspects of the four-year journey to develop the Basin Plan, and seek to draw out a number of key lessons.

Modelling population growth of river red gum and black box communities in relation to water availability

Justin Murray, **Joe Scanlan**, **Carmel Pollino**

1. CSIRO, Brisbane, QLD, Australia
2. Department of Agriculture Fisheries and Forestry, Toowoomba, Queensland, Australia
3. Land & Water, CSIRO, Canberra

Understanding and meeting environmental objectives requires knowledge of the amount of water needed to sustain water-dependent ecological communities. To enhance understanding how changes in water availability can affect floodplain vegetation communities, it is necessary to understand the effects of varying water availability on the different life stages. We used a stock-and-flow system dynamics tool to develop population models for river red gum (Eucalyptus camaldulensis) and black box (Eucalyptus largiflorens) communities in the Murray Darling basin, outputs systems response models for normal, and extreme wet and dry conditions. We interviewed experts to gain knowledge of survival and death rates at the different life stages and used these to populate our models. While mature trees were able to withstand extreme conditions for longer periods, saplings and poles were mostly affected by infrequent flooding or limited duration. Densities of the plants were also a factor in the plant growth of the plants. These models help bridge the current knowledge gap on population dynamics of nipa and vegetation by offering two population models for estimating water availability requirements across life stages for healthy floodplain vegetation communities.

Lakes sensitivity to climate change and nutrients availability: a coupled hydrodynamic ecological modelling study

Arina Hipsey, **Chaturangi Wickramaratne**, **Matthew Hipsey**, **Justin Brookes**

1. The University of Adelaide, Adelaide, SA, Australia
2. University of Western Australia, Crawley, WA

Changes in temperature and nutrients are considered the most important factors controlling phytoplankton composition and community structure in freshwater lakes, although their relative importance and their interaction are still unclear. In this study we applied a recently developed open source 1D model GLM-FABM to two lakes (Mt Bold reservoir, AU; Lake Tarawera, NZ) with different trophic state. After calibration and validation a matrix of 25 scenarios, combining temperature and nutrient changes during a period of two years was simulated. It was analysis how changes in physical and chemical variables affected phytoplankton abundance and composition. Additionally relative importance of temperature and nutrient and their interaction was evaluated. Modelling experiments showed that seasonal variability and trophic states affect the relative importance of these two factors. Moreover, the competition between algal groups (e.g. Chlorophytes and Cyanobacteria) was identified as a significant factor controlling the development of the phytoplankton community and its response to the external drivers.

At The Coalface: Developing A Decision Support Tool To Assess Hydro-Ecological Risks To Lake Eyre Basin Rivers

Ryan Hooper, **Douglas Green**, **David Deane**, **Jen St Jack**

1. Department of Environment, Water and Natural Resources, Adelaide, SA, Australia

A decision to develop mineral resources within unregulated, ephemeral surface water catchments of the Lake Eyre Basin requires a proper assessment of social, economic and environmental risks within the socio-political context of the day. But, how do decision-making authorities properly assess and make an informed decision on a mining proposal without a way to incorporate ecological complexity into their risk assessments? This presentation outlines data gathering, analyses and modelling currently being trialled to aid future decision-makers in exploring hydro-ecological risks that alternate decision and management scenarios present for aquatic ecosystem ‘agents’ (represented by four native fish species) and ‘tomains’ (represented by defined aquatic ecosystem function zones) in the Arkaroola Basin in Northern South Australia. Our experience shows that developing a useful decision support model (DSM) requires a consultative process to understand the context of regulatory needs and uncertainty. We discuss options for DSMs that allow managers and decision-making authorities to openly explore priorities and risk criteria setting for highly valued but lesser known aquatic ecosystems of Lake Eyre Basin Rivers.

A mark-recapture method using tissue genotyping for estimating the number of narrow-barred Spanish mackerel (Scomberomorus commerson)

Michael Macbeth, **Damien Broderick**, **Rik C Buckworth**, **Jennifer R Ovenden**, **You-Gan Wang**

1. Centre for Applications in Natural Resource Mathematics, The University of Queensland, St Lucia, Queensland, Australia
2. School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
3. Wealth from Oceans, CSIRO Marine & Atmospheric Research, Brisbane, Queensland, Australia
4. Molecular Fisheries Laboratory, The University of Queensland, St Lucia, Queensland, Australia

Fine spatial scale capture rates of narrow-barred Spanish mackerel (Scomberomorus commerson) from the commercial fishery adjacent to Darwin (Northern Territory) were estimated in a mark-recapture framework by genotyping tissue sampled non-invasively with a specially designed hook. Once stuck, the hook tip contained a small sample of tissue that was genotyped and compared to genotypes of landed fish caught during the same fishing trip. This simultaneous mark-recapture design was used to estimate the average number of actively feeding fish encountered per fishing day. The mean was 281 fish, with a 95% confidence interval ranging from 187 to 312 fish. The 95% confidence interval for the percentage of actively feeding fish caught ranged from 11% to 19%, with a mean of 17%. We propose that genetic sampling combined with random sampling of fishing transects may be useful in monitoring changes to abundance over time.

A novel field method to reliably distinguish between the cryptic carcharhinid sharks, Carcharhinus tilistoni and C. limbatus

Grant J Johnson, **Rik C Buckworth**, **Hock Lee**, **Clive McMahon**

1. Department of Primary Industry and Fisheries, Northern Territory Government, Darwin, Northern Territory, Australia
2. Marine and Atmospheric Research, CSIRO, Brisbane, Queensland, Australia
3. Institute Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
4. Wealth from Oceans, CSIRO Marine & Atmospheric Research, Brisbane, Queensland, Australia

There has been a proliferation of research into water planning in response to water reform in the past 5 years. Research has The Common Blacktip Shark, Carcharhinus limbatus, and the Australian Blacktip Shark, C. limbatus, are the primary populations targeted by the Northern Territory Offshore Net and Line Fishery (ONLF). These sharks are similar in appearance and until recently could only be distinguished through slow and/or destructive means. Despite their similar appearance, these sharks have very different life histories. The Australian endemic, C. tilistoni breeds biennially, matures faster and at a smaller size, than C. limbatus, which breeds biennially and is found in tropical and warm coastal waters worldwide. Our aim was to develop a method that would enable accurate field identification of these two species.

Ninety seven morphological measurements were collected from 112 sharks (95 C. tilistoni, 17 C. limbatus) identified by precaudal vertebrae counts and genetic analyses. Multivariate and machine learning techniques were used to identify key measurements (fork length, caudal-fin peduncle height, interdorsal space, second dorsal fin height, pelvic-fin length and pelvic-fin midpoint first dorsal fin insertion) that can be used to distinguish between the two species. There were also significant differences in pelvic-fin markings between species. C. limbatus had a distinct black mark greater than 3% of the total pelvic fin area, while C. tilistoni had either smaller markings, markings with diffuse edges, or no markings at all. The morphological differences identified here will become an important part of a multi-faceted approach to C. tilistoni/C. limbatus identification in the ONLF and will inform the management and conservation of these commercially important sharks.
Oral abstracts

235

Standards for the effective management of fisheries bycatch

David S Kirby1, Peter Ward1

1. University of Wollongong, Tarrawanna, NSW, Australia
2. ABARES, DAFF, Canberra, ACT, Australia

Mitigating the environmental impact of commercial fishing, by avoiding, minimizing and compensating for adverse effects, is core business for fisheries management authorities. The complex interplay of ecological, economic, and social considerations has often resulted in bycatch management being reactive, confrontational and costly. In many cases it is difficult to demonstrate success and to establish whether management has been efficient or effective. This paper proposes standards for bycatch management following reviews of literature, international agreements and management policies, and consideration by technical experts and stakeholder representatives. The standards were developed for Australian Commonwealth fisheries – and from the international fisheries agreements to which Australia is party – but are applicable to other domestic and regional/international governance systems. The proposed standards involve quantifying fisheries bycatch, agreeing on operational objectives, assessing the effects of fishing on bycatch populations, establishing the cost-effectiveness of mitigation measures, and evaluating performance. The standards encourage domestic management measures that are consistent with international agreements. The importance of engaging stakeholders is recognised. The standards provide a framework for measuring performance and a checklist of management actions. They have the potential to lead to more strategic and effective approaches to bycatch management, with defined goals, monitoring systems, and adaptive decision-making. This review of past bycatch management, including retrospective application of the standards to mitigation of shark bycatch in an Australian longline fishery, demonstrates that the standards are operationally feasible but that they have not always been applied. Specifically, monitoring the performance of bycatch management measures has not always followed implementation.

236

Fine scale distribution of two lowland rainbowfish species in north-eastern Queensland

Keith Martin1

1. Unaffiliated, Clifton Beach, QLD, Australia

North-eastern Queensland, including the Wet Tropics and southern Cape York Peninsula is a biodiversity hotspot for Australian freshwater fish. In particular, there are seven currently recognised rainbowfish taxa, and a likelihood of additional undescribed species. All but one of the rainbowfish taxa are either endemic to the region, or reach their southerly distribution limits in the region. Although there are large tracts of protected areas in north-eastern Queensland, coastal lowland freshwater habitats are poorly represented and potentially vulnerable to disturbance. Analysis of habitat extent and distribution of rainbowfishes in the region based on historical records can be misleading due to past misidentifications, translocations and possibly localised extinctions. Further, some lowland rainbowfish species have specialised habitat requirements and highly fragmented distribution patterns. This project examines the historic and current distribution of two coastal lowland rainbowfish species (Melanotaenia trifasciata and Cairnsichthys rhombosemioides) in the Wet Tropics and adjacent regions. The translocation fine scale distribution of these species was determined through field surveys and included documentation of sites and habitats, local extent of populations and the discovery of some new populations. The continued viability of some populations is of concern due to their small size and restricted habitat.

237

Biodiversity discovery expedition to the Hindenburg Wall region, Papua New Guinea: Fishes, Frogs and Odonates

Michael Hamner1, Stephen Richards2

1. Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
2. South Australian Museum, Adelaide, SA

The heady days of early-exploitation saucers adventures to remote parts of the world, leading to the first European observations of spectacular and sometimes bizarre animals. Surprisingly, there are still many regions of Australia which are yet to be fully explored, and much remains to be discovered. In February 2013 scientists from MAGNT joined a Wildlife Conservation Society expedition to the Hindenburg Wall region of Papua New Guinea where around 80 news species of plants and animals were discovered! The presentation features some interesting and unusual aquatic animals (including language names for fish), but more broadly shows what it is like to spend a month in remote tropical jungle working closely with local communities as part of a team contributing to biodiversity conservation.

Poster abstracts

231

Ecological impacts of extraction during summer low flows on pool refuges in South Coast NSW

Robyn Bevitt1

1. NSW Office of Water, Wollongong, NSW, Australia

Whilst the ecological impacts of dams are well known, such as changes to thermal regimes and reduced diversity of macroinvertebrate assemblages, there have been fewer studies of the ecological impact of water extraction on rivers where flows have not been modified by dams. Irrigation extraction during low flows in summer is likely to have similar ecological impacts to drought including reduced habitat and increased water temperature causing changes to macroinvertebrate assemblages. Several studies have examined the potential for pools in inland and intermittent river systems to provide refuge during drought and low flow conditions, but few studies have examined pools in coastal rivers. This study investigates the impact of extraction during summer low flows on water temperature and macroinvertebrate assemblages in two rivers on the far south coast of NSW that have high water demand and high in-stream conservation value. Macroinvertebrates will be sampled quantitatively in 6 refuge pools and upstream riffles in test and control sites. Sampling will be bi-monthly for a 12 month period to determine the ecological impact of pool draw-down from water extraction, whether pools serve as refuges for rheophilic invertebrates, and determine potential recovery rates. Water temperature, dissolved oxygen and pool size will be measured continuously to investigate the relationship between these variables and macroinvertebrate assemblages during pool draw-down. The results of this study will be used to inform Water Sharing Plans which set rules for water use during very low flows.

232

Connecting science with management in a multi-tenure, cross-border landscape - Strategic Adaptive Management in the Lake Eyre Basin

Sonia Collville1, Vol Norris1, Casuarina Dalton1

1. DPI, Department of the Environment, Canberra, ACT, Australia

The rivers of the Lake Eyre Basin are unique on a world scale. River flows are highly variable and unpredictable, creating a distinctive ‘boom and bust’ environment. These rivers are relatively pristine and unregulated but face challenges from climate change, introduced species, agriculture, tourism and mining activities. A strategic adaptive management framework is being used to determine if the condition of the Lake Eyre Basin is shifting beyond a natural condition and to develop management responses to address these changes. The first step in this process was to clearly establish a widely shared vision for the Lake Eyre Basin. Lake Eyre Basin – Australia’s unique, natural, desert river system: healthy environments, sustainable industries, vibrant communities, adaptive cultures.

This vision has been developed over the past three years through consultation among Lake Eyre Basin stakeholders including the Community Advisory Committee and Scientific Advisory Panel. Members of these committees include representatives from industry, science, community and indigenous and cultural values.

The ongoing challenge is for science, community, industry and management stakeholders to work together to understand thresholds of change for Lake Eyre Basin environmental assets. By understanding these thresholds it will assist stakeholders to respond before these thresholds have been reached or passed. This management approach being used is the thresholds of potential concern method. This poster will be of interest to people working on and zoned rivers, indigenous engagement and methods to set environmental thresholds.

233

Performance of Small Mesh Drift nets in Rivers

Alan Cough1, Fiona Dyer1, Mark Limberts2, Pat Ross-Magea1

1. Institute for Applied Ecology, University Of Canberra, ACT, Australia
2. NSW Office of Water, Wollongong, NSW, Australia

Deploying small-mesh drift nets in rivers is a well-established method for sampling drifting fish larvae and eggs. Quantitative comparisons are sometimes made on the basis of numbers of larvae captured per unit volume or time. In this study a GoPro ™ camera was mounted inside the drift net to record the change in flow over time (1 to 5 minute intervals for 3 hours). Although a small number of net nights (7 nights at 3 locations) were sampled, variance in the change in flow within and between sites was observed – even during soak times as little as 2 hours. In one case there was almost no change in flow over 180 minutes but at the most extreme, the flow dropped from 4.6 m3/min to 0.8 m3/min in just 130 minutes. Variance is probably due to the level of suspended particulates at different sites or times. If volumetric or temporal estimates are made on the basis of total flow only they could in some cases be misleading and at worst make comparisons almost meaningless. While there are dedicated data logging flow meters available they are prohibitively expensive for routine sampling. Researchers could consider the method used in this study to cost effectively assess the decay in net performance during sampling.

234

Fine scale distribution of two lowland rainbowfish species in north-eastern Queensland

Sonia Collville1, Vol Norris1, Casuarina Dalton1

1. DPI, Department of the Environment, Canberra, ACT, Australia

Whilst the ecological impacts of dams are well known, such as changes to thermal regimes and reduced diversity of macroinvertebrate assemblages, there have been fewer studies of the ecological impact of water extraction on rivers where flows have not been modified by dams. Irrigation extraction during low flows in summer is likely to have similar ecological impacts to drought including reduced habitat and increased water temperature causing changes to macroinvertebrate assemblages. Several studies have examined the potential for pools in inland and intermittent river systems to provide refuge during drought and low flow conditions, but few studies have examined pools in coastal rivers. This study investigates the impact of extraction during summer low flows on water temperature and macroinvertebrate assemblages in two rivers on the far south coast of NSW that have high water demand and high in-stream conservation value. Macroinvertebrates will be sampled quantitatively in 6 refuge pools and upstream riffles in test and control sites. Sampling will be bi-monthly for a 12 month period to determine the ecological impact of pool draw-down from water extraction, whether pools serve as refuges for rheophilic invertebrates, and determine potential recovery rates. Water temperature, dissolved oxygen and pool size will be measured continuously to investigate the relationship between these variables and macroinvertebrate assemblages during pool draw-down. The results of this study will be used to inform Water Sharing Plans which set rules for water use during very low flows.

Connecting science with management in a multi-tenure, cross-border landscape - Strategic Adaptive Management in the Lake Eyre Basin

Sonia Collville1, Vol Norris1, Casuarina Dalton1

1. DPI, Department of the Environment, Canberra, ACT, Australia

The rivers of the Lake Eyre Basin are unique on a world scale. River flows are highly variable and unpredictable, creating a distinctive ‘boom and bust’ environment. These rivers are relatively pristine and unregulated but face challenges from climate change, introduced species, agriculture, tourism and mining activities. A strategic adaptive management framework is being used to determine if the condition of the Lake Eyre Basin is shifting beyond a natural condition and to develop management responses to address these changes. The first step in this process was to clearly establish a widely shared vision for the Lake Eyre Basin. Lake Eyre Basin – Australia’s unique, natural, desert river system: healthy environments, sustainable industries, vibrant communities, adaptive cultures.

This vision has been developed over the past three years through consultation among Lake Eyre Basin stakeholders including the Community Advisory Committee and Scientific Advisory Panel. Members of these committees include representatives from industry, science, community and indigenous and cultural values.

The ongoing challenge is for science, community, industry and management stakeholders to work together to understand thresholds of change for Lake Eyre Basin environmental assets. By understanding these thresholds it will assist stakeholders to respond before these thresholds have been reached or passed. This management approach being used is the thresholds of potential concern method. This poster will be of interest to people working on and zoned rivers, indigenous engagement and methods to set environmental thresholds.

Performance of Small Mesh Drift nets in Rivers

Alan Cough1, Fiona Dyer1, Mark Limberts2, Pat Ross-Magea1

1. Institute for Applied Ecology, University Of Canberra, ACT, Australia

Deploying small-mesh drift nets in rivers is a well-established method for sampling drifting fish larvae and eggs. Quantitative comparisons are sometimes made on the basis of numbers of larvae captured per unit volume or time. In this study a GoPro ™ camera was mounted inside the drift net to record the change in flow over time (1 to 5 minute intervals for 3 hours). Although a small number of net nights (7 nights at 3 locations) were sampled, variance in the change in flow within and between sites was observed – even during soak times as little as 2 hours. In one case there was almost no change in flow over 180 minutes but at the most extreme, the flow dropped from 4.6 m3/min to 0.8 m3/min in just 130 minutes. Variance is probably due to the level of suspended particulates at different sites or times. If volumetric or temporal estimates are made on the basis of total flow only they could in some cases be misleading and at worst make comparisons almost meaningless. While there are dedicated data logging flow meters available they are prohibitively expensive for routine sampling. Researchers could consider the method used in this study to cost effectively assess the decay in net performance during sampling.
Environmental drivers of depth use by an exploited reef fish
Leanne M Currey1,23, Michelle R Heupel1,2, Colin A Simpfendorfer1,2, Ashley J Williams1,2
1. Australian Institute of Marine Science, Townsville, QLD, Australia
2. Centre for Sustainable Tropical Fisheries and Aquaculture & School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, Australia
3. AIMSirICU, Townsville, QLD, Australia
4. Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia

Redthroat emperor (Lethrinus miniatus) is an important species to fisheries of Australia, Japan, New Caledonia and Tonga, yet little is known about its movement patterns. Recent research has revealed variability in movement patterns among individuals, with no consistent patterns observed in presence or depth use related to individual size or time of day. Knowledge of how environmental conditions influence movement patterns of redthroat emperor is vital to better understanding response of this species to changes in climate. Utilising an acoustic telemetry network at three reefs combined with in situ real-time monitoring of environmental conditions, this research investigates the vertical space use of redthroat emperor in relation to water temperature, tides, rainfall, air pressure and wind speed. Sixty adult individuals were fitted with Vemco V13P transmitters over three deployments, and monitored within a network of passive acoustic receivers in the southern Great Barrier Reef, Australia (April 2011-September 2013). Models compared environmental data with weekly and monthly vertical activity spaces and identified the environmental parameters that drive patterns in depth use. This study offers new insights into the ecology of this important species, and will allow managers to better predict the effect of environmental conditions on the movement patterns of this species.

Persistent Waterholes in an Arid-zone River – Surprising Diversity and Abundance on the mid-Finke
Patrick Hodgens1, Angus Dougall2, Edward Connellan2
1. Northern Territory Government, Alice Springs, NT, Australia
2. Mengei’s Hell Services, Alice Springs, NT, Australia

Rivers in arid environments can persistently so long-lasting waterholes are critical locations for aquatic life. Knowledge of the location and basic character of waterholes should underpin catchment scale condition assessment and associated ecological understanding. Across the Lake Eyre Basin, waterhole monitoring is conducted to assess river health, however, in the Finke River poor mapping was due to limited specific and monitoring data. We address this knowledge gap in the mid-section of the Finke combined consultation with pastoralists and traditional owners, inspection of satellite imagery, aerial survey and ground survey. Only 20 waterholes were previously mapped, all of undetermined character. Information from landholders convinced us that 3 waterholes are permanent, but that relatively few others lasted more than a year without flow. Aerial survey 15 months after a flow event identified 274 distinct pools. Ground survey indicates most were shallow (< 1m) but with depths ranging up to 9 m deep. Water levels in many pools were surprisingly close to water at the close to the city of Canberra. Regular fish monitoring has been conducted along the Cotter River since 2001 and provides information on the distribution of several threatened native species, as well as Brown and Rainbow Trout. Fish monitoring results suggest that relatively few others lasted more than a year without flow. Aerial survey 15 months after a flow event identified 274 distinct pools. Ground survey indicates most were shallow (< 1m) but with depths ranging up to 9 m deep. Water levels in many pools were surprisingly close to water at the close to the city of Canberra.

When common species become rare: freshwater mussels in the Hawkesbury-Nepean River
Meredith A Brainwood1, Carolina A Forest2
1. Applied Ecology P/L, Limekilns, NSW, Australia
2. University of Technology Sydney, Sydney, NSW, Australia

Unlike their US and European counterparts, conservation of freshwater mussels in Australia is frequently met with disinterest or disregard. Despite their importance as ecosystem engineers, their applications as bioremediators for river systems, and the food source they provide for our aquatic mammals, little consideration has been given to managing rivers to ensure the ongoing health of mussel populations. To address concerns for their survivability we collated data from a number of research projects across Australia.

We resurveyed selected sites in the Hawkesbury-Nepean after about a decade, and found greatly reduced recruitment evidenced by changes in the population structures for species, or no recruitment at all. As well, there was considerable variation in population densities for each species assessed. We believe this gives clear evidence of the decline in freshwater mussels, and that this is happening throughout our river systems across Australia.

When common species become rare: freshwater mussels in the Hawkesbury-Nepean River
Meredith A Brainwood1, Carolina A Forest2
1. Applied Ecology P/L, Limekilns, NSW, Australia
2. University of Technology Sydney, Sydney, NSW, Australia

Unlike their US and European counterparts, conservation of freshwater mussels in Australia is frequently met with disinterest or disregard. Despite their importance as ecosystem engineers, their applications as bioremediators for river systems, and the food source they provide for our aquatic mammals, little consideration has been given to managing rivers to ensure the ongoing health of mussel populations. To address concerns for their survivability we collated data from a number of research projects across Australia.

We resurveyed selected sites in the Hawkesbury-Nepean after about a decade, and found greatly reduced recruitment evidenced by changes in the population structures for species, or no recruitment at all. As well, there was considerable variation in population densities for each species assessed. We believe this gives clear evidence of the decline in freshwater mussels, and that this is happening throughout our river systems across Australia.

Long term water quality monitoring in the Intersecting Streams
Tracy Fulford1, Monika Muschal1
1. NSW Trade and Investment, Tamworth, NSW, Australia

The Intersecting Streams located in north-western NSW forms part of the Darling River drainage system that crosses the New South Wales-Queensland Border. The rivers drain a remote low relief landscape and are largely ephemeral in nature. They provide for irrigation, stock, domestic, mining, town water and recreation. Annual rainfall averages less than 500mm with the western areas being classed as semi-arid. Water quality monitoring began in the early 1990s to better understand the base-line characteristics of these remote semi-arid systems. We have collected over 20 years of data from six rivers spanning multiple wetting and drying periods, enabling a unique long-term understanding of the water quality characteristics of these ephemeral rivers during different climatic conditions. Electrical conductivity of the Warrego and Paroo Rivers are notably lower than the other Intersecting Streams, with medians of 89ms/cm and 133ms/cm respectively. Turbidity levels are highly variable throughout and have the potential to be very turbid, with most sites giving median turbidity levels over 300NTU and the Paroo and Warrego Rivers having medians over 600NTU. The Paroo River has extremely fine sediments that remain in suspension indefinitely regardless of environmental conditions, with the lowest Total Suspended Solids result being 64mg/L. The Paroo and Warrego were the only rivers in the Murray-Darling Basin Sustainable Rivers Audit (2012) to be given scores that suggests their overall condition is close to natural. Examination of this water quality record will provide valuable information about these unique semi-arid river systems for future water management within the Murray-Darling Basin and across Australia.
Nutrient release from inundated terrestrial vegetation in the Enlarged Cotter Reservoir

Scott Huntley1, lain Ellis1, Braeden Lampard1

1. University of Canberra, Canberra, ACT, Australia

Worldwide, dams are continually being built and enlarged to supply water for the growing human population. The inundation of large areas of land and vegetation in the process of filling new reservoirs provides a large input of nutrients into the aquatic system, resulting in trophic upsurge. A trophic upsurge is likely to result in a change of fish food resources and cause other water quality changes, such as a decrease in dissolved oxygen. While many reservoirs designed for domestic water supply purposes limit the influx of nutrients through the removal of vegetation and topsoil prior to filling, the vegetation and topsoil in the inundation zone of the Enlarged Cotter Dam (ECD) has not been removed. Cube metre samples of topsoil and dominant vegetation types in the inundation zone of the ECD were collected, including blackberry, eucalypt, pine and silver wattle. The samples were submerged in 1m3 Intermediate Bulk Containers with 1m3 water extracted from Cotter River. Water samples were analysed for TN, TOC dissolved oxygen, temperature, turbidity, electrical conductivity and pH on day 1, 2, 3, 4, 6, 8, 10, 12, 14, 21, 25, 29, 37, 44, 53, 65, 74, 84, 106. Results indicate that inundation negatively impacted on water quality across all vegetation types, DO fell below 1mg L−1 after 10–20 days in the eucalypt, pine and wattle containers. By the conclusion of the experiment DO fell to such severe levels that there would have been extreme stress and mortality of aquatic biota under all sampled conditions.

Translocation of Murray hardyhead (Craterocephalus fluviatilis) from captive bred populations to aid in species recovery

Scott Huntley1, lain Ellis1, Braeden Lampard1

1. Munro Darling Freshwater Research Centre, Mildura, VIC, Australia

Murray hardyhead are a threatened small-bodied native fish species currently limited to three known isolated populations in Victoria and perhaps one in South Australia. Since 2004 management of Murray hardyhead has been problematic due to prolonged drought (the “Millennium Drought”), with captive maintenance and translocation efforts established to prevent a widespread extinction. At least four Victorian populations became extinct during the drought, and the persistence of remaining populations remains tenuous. Lake Koorong was the first wetland site in Victoria actively managed for the translocation of Murray hardyhead. This poster outlines the details and success of the release of captive bred Murray hardyhead through examination of its population structure and recruitment.

Parenting behaviour in threatened paragalaxiids of the Tasmanian central plateau

Kevin Macfarlane1, Scott Harde1, Leon Bamuta1

1. Entura, Hydro Tasmania, Cambridge, Tasmania, Australia

School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia

Knowledge of reproductive strategies of threatened fishes is critical to the management of their populations, especially attributes that can enhance breeding success. Approximately 20% of teleosts exhibit parental care, a behaviour that enhances survival and development of offspring, however, this strategy has not been documented in galaxiids, which are dominant in temperate inland waters of several land masses in the Southern Hemisphere. Arthurs Lake, Great Lake and Lake Augusta are home to all four species of Paragalaxias, which is an endemic genera to central Tasmania, Australia.

During a five-year study, snorkel based observations and in situ underwater camera equipment were used to examine spawning sites and parental behaviour of all four Paragalaxias species (Paragalaxias dissimilis, P. eleotroides, P. julianus and P. mesotes). These fishes shelter in trickles and spawning sites are often multiple hundreds of metres apart and not always found. Cubic metre samples of topsoil and dominant vegetation types in the inundation zone of the ECD were collected, including blackberry, eucalypt, pine and silver wattle. The samples were submerged in 1m3 Intermediate Bulk Containers with 1m3 water extracted from Cotter River. Water samples were analysed for TN, TOC dissolved oxygen, temperature, turbidity, electrical conductivity and pH on day 1, 2, 3, 4, 6, 8, 10, 12, 14, 21, 25, 29, 37, 44, 53, 65, 74, 84, 106. Results indicate that inundation negatively impacted on water quality across all vegetation types, DO fell below 1mg L−1 after 10–20 days in the eucalypt, pine and wattle containers. By the conclusion of the experiment DO fell to such severe levels that there would have been extreme stress and mortality of aquatic biota under all sampled conditions.

The likelihood of floodgate opening (saline intrusion) causing conditions that promote algal blooms and fish kills in a coastal lagoon

Gaia McGregor1, Jane Chambers1, Belinda Robson1, Kath Lynch1

1. Murdoch University, West Perth, WA, Australia

The Vasse Wonnup wetlands in south-western Australia are a Ramsar-listed, shallow barrier wetland that has been highly modified with the construction of floodgates to reduce seawater input. Within the community, it is perceived that recouping algal blooms and fish kill events are caused by eutrophication and opening the floodgates will dilute the water body, thereby reducing their occurrence. While nutrients fuel algal blooms, research has shown that other factors such as light penetration and stratification may be the key drivers that trigger a particular bloom. This study will determine what combinations of physicochemical variables are most likely to promote algal blooms or fish kill events. This will be done by measuring a suite of physicochemical profiles of the water column during summer, before and after the floodgates have been opened and relating it to chlorophyll a measurements, phytoplankton community species composition and fish kill events. This will inform the development of different scenarios of combinations of physicochemical variables, which will be tested in a structural equation model. These scenarios can be used to inform managers of the conditions that promote algal blooms and when it is appropriate to open the floodgates.

Murray River crayfish: could they be a key surrogate species for freshwater conservation?

Mac N Noble1, Jamie Pittuck2, Brendan C Ebner1, Christopher J Fulton2

1. Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
2. Centre for Tropical Water & Aquatic Research, (TropWATER) & CSIRO, Atherton, QLD, Australia

Conserving freshwater ecosystems to protect biodiversity and critical ecosystem functions is needed if we are to continue to receive the essential goods and services we require from our catchments in and countries such as Australia. However, the complexity of freshwater ecosystems and their response to various pressures (e.g., water extraction, species loss, changing hydrology, urban development) has posed some major challenges for management. One approach to the problem has been the use of surrogate species as a focal point for conservation planning and monitoring. Here, I explore the prospect of using Murray River crayfish (Euastacus armatus) as a key surrogate species for monitoring and management of upland catchments within the Murray-Darling basin of southeast Australia. By introducing all the elements of an effective surrogate species, and how Murray River crayfish may fit these criteria, we look to provide a solid basis for future planning and investment in freshwater conservation and management.

Mapping giant clams (Tridacnidae) in the Northern Territory, Australia using a novel remote video system

Shane Penny1, Keith McGuiness1, Chris Austin2, Michael Hamme2

1. Charles Darwin University, Darwin, NT, Australia
2. School of Science, Monash University Sunway Campus, Selangor, Malaysia
3. Museum and Art Gallery of the Northern Territory, Darwin, NT, Australia

Giant clams (conventionally family Tridacnidae) are a conspicuous inhabitant of coral reefs throughout the Indo-Pacific region. Surprisingly, anecdotal reports, and museum voucher specimens, suggest that the fluted giant clam Tridacna squamosa may be species of giant clam inhabiting rocky coral reefs in the Northern Territory (NT), despite a possible 10 being known from the Indo-Pacific. Our research is the first to investigate the abundance, distribution, phylogeny and geohistory of giant clams within the coastal reefs of the NT. The NT is a sparsely populated area of northern Australia, with limited infrastructure in the mostly remote coastline. Travel relies on planes or boats, subject to prevailing weather conditions. In these circumstances, underwater survey using SCUBA is an expensive and time consuming exercise, carrying a significant risk of attack from sharks and estuarine crocodiles. We developed a novel underwater video system to survey reefs in three remote regions of Arnhem Land, NT. Using a commercially available GPS, depth sounder, video lens, and text overlay box we built a relatively cheap, portable and easy to use georeferenced video system to survey reefs in shallow water. The equipment was tested and calibrated before it was used in the field. After each survey, image frames were extracted from the video transects and calibrated before virtual quadrats were overlaid and measurements taken. Multivariate analysis was used to compare the percentage of habitat coverage within sites with different quadrats and between sites, areas and regions. Length frequency was estimated from calibrated video frames, and abundance from transect observations.
Poster abstracts

Spatial, temporal and size-based trophic analyses of albacore tuna using stable isotopes and fatty acids
Heidi R Pathybridge1, Jock W Young1, Christopher C Parrish2, Petra M Kuhnert1, Jessica H Farley1, Peter D Nichols1
1. Oceans and Atmosphere Flagship, CSIRO, Hobart
2. Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Canada

We examined the trophodynamics of albacore tuna in the south-west Pacific Ocean using novel numerical and biochemical tracer approaches. Specifically, General Additive Models (GAMs) were used as an exploratory and predictive tool to assess the influence of collection site and time, and individual length and age on bulk carbon and nitrogen isotopes and on fatty acid biomarkers. Interpolated results were relayed on a landscape map of the south-west Pacific Ocean to show the spatial distribution of these biochemical tracers. Clear spatial differences in δ15N and δ13C, and in fatty acid markers 20:5n3, 16:1n7 and 22:6n3 were detected and related to distinct biological (blotom vs dorsal/flagellate) and oceanographic (temperature and eddy) features off east Australia. Stable isotopes with slower turnover rates, were shown to vary seasonally for carbon and annually for nitrogen, whereas fatty acids varied monthly and/or seasonally. Ontogenetic patterns of biochemical parameters were also detected and related to migration and related feeding trends known to occur in the species. Detection of stable isotopes and temporal and spatial differences support the use of stable isotopes and fatty acids as tools to detect within community changes over space and time. Our findings also suggest that; these biochemical tracers can be used to monitor bottom and top order processes in respect to fisheries and climate change.

Ecogonomic tracing of trophic connectivity in tropical coastal and freshwater fish communities
Tom Rayner1, Tiffanie Nelson2, Tim Jardine3, Dominic Valdez1, Stuart Bunn1, Michael Douglas1
1. Charles Darwin University, Nightcliff, NT, Australia
2. Australian Institute of Marine Science, Darwin, NT, Australia
3. University of Saskatchewan, Saskatoon, Canada

Fish play an important role in the transport of energy through tropical coastal and oceanic food webs. This project proposes a novel method, based on next-generation sequencing, to reconstruct feeding links by examining DNA of gut bacteria. Paired isotope and 16S rRNA gut bacteria sequences were generated from 61 fish of 10 species, with omnivorous, herbivorous and carnivorous diets, collected from a billabong in Kakadu National Park. This area is of significant social and environmental value for indigenous and non-indigenous peoples. A stepwise distance-based linear model procedure was then used to determine the variation in gut bacteria community composition explained by isotope signatures of basal food sources. Diversity of gut bacteria phyyla was higher in fish with omnivorous and herbivorous diets than fish with carnivorous diets. However, bacteria from two phyyla (proteobacteria and firmicutes) represented over 50% of the total richness within each fish trophic guild. Stable isotope data explained ~25% of overall gut bacteria community structure, with savanna and planktonic sources explaining most variation. The results confirm previous studies emphasising the role of diet in shaping host gut bacteria. However, the approach could be improved through greater replication of each guild and species, analysis of connectivity between sites and examination of patterns at higher levels of taxonomic resolution. A critical next step will be to incorporate data from another 20 sites that were sampled, to test if bacterial species, functional guilds and communities can be traced through the aquatic food chain.

Integrated Ecosystem Condition Assessment
Christine Reid1
1. Murray-Darling Freshwater Research Centre, Wodonga, VIC, Australia

The intent of the Integrated Ecosystem Condition Assessment (IECA) Framework is to provide a methodology for development of aquatic asset-based condition assessments that are capable of incorporating different connected aquatic ecosystem types (e.g. rivers, floodplains, lakes, marshes and estuaries), and the key ecosystem functions that support them. It aims to allow transparent comparisons of the condition of diverse aquatic ecosystems with different values and management objectives. The Framework builds on current approaches to broad-scale and asset-based condition assessments based on the functional processes and ecological characteristics (e.g. components and processes) that underpin the aquatic asset’s key ecological values, and scopes new ground by taking into account connectivity, resilience, natural variability and where appropriate, threats and pressures. The Framework allows for condition to be evaluated and reported in relation to risk, thresholds and management actions to aid adaptive management. As such a key step is to relate ecosystem condition to valued assets of the nominated aquatic ecosystem.
IECA has the challenge of addressing a water manager’s capacity to identify and prioritise the threats and impediments which cause decline or prevent recovery. The Framework will assist in identifying critical knowledge gaps and in prioritising management actions and research needs. It aims to provide a systematic, cost-effective and repeatable process that can fit into existing Monitoring, Evaluation and Reporting Frameworks. IECA is explicitly a value-based assessment and this has challenges from a science perspective.

Comparative phylogeography of four aquatic species from the Murray-Darling Basin
Peter Unnack1, Bernd Gruber1, Arthur Georges2
1. Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia

The Murray-Darling Basin (MDB) has a complex biogeographic history as it is surrounded by more independent river basins than any other Australian basin. As a result portions of the aquatic fauna have a mix of relationships to all surrounding regions, as well as an endemic component. Our project has three principal goals. 1) Is there an historical signature on biodiversity in the MDB and adjacent drainages that remains evident in the genetic structure of widespread species? 2) Are there concordant patterns of genetic structure across disparate aquatic and water-dependent organisms? 3) What are the impacts of dams on dispersal and degree of erosion of local genetic diversity of aquatic organisms? We chose four unrelated aquatic species that were widespread across the MDB, but that lacked known complications due to introgression or presence of cryptic species: the fish Australian Smelt (Retropinna semoni), river turtle (Emydura macquarii), yabby (Cherax destructor) and shrimp (Macrobrachium australiensis). We are exploring patterns of genetic diversity using SNP variation from thousands of loci to address these three questions.

The gill net selectivity of four teleost species in south-western Australian estuaries
Daniel E Yeo1
1. Centre for Fish and Fisheries Research, Murdoch University, Murdoch, WA, Australia

An understanding of fishing gear selectivity is crucial for managing fisheries appropriately. This study examined the gill net selectivity of four teleost species that are recreationally and/or commercially fished with gill nets in south-western Australia. Black Bream (Acanthopagrus butcheri), Sea Mullet (Mugil cephalus), Perth Herring (Nematalosa vlamincki) and Tailor (Pomatoscomus saltatrix). Sampling was undertaken in five south-western Australian estuaries using gill nets with mesh sizes ranging from 38 to 127 mm. The total length of all four species increased with increasing mesh size. Linear relationships between maximum girth (Gmax) and opercular girth (Gope), and total length (TL) varied markedly among species. Selectivity curves, i.e. the relative retention probability of a fish at a given length within a mesh, were estimated using the SELECT method. The spread and mode of these curves varied extensively among species due to their morphological and behavioural characteristics. Modes for the selectivity curves of A. butcheri, the species with the greatest girth at any given length, were less than those of the other three species across all mesh sizes. The selectivity curves were broadest for P. saltatrix due to the far greater proportion of tangled fish than meshed fish, i.e. gilled and wedged. The gill net selectivity of A. butcheri differed among estuaries, which reflects significant differences (ANOVA, P <0.01) in body condition, and thus girth length relationships, of fish among the five estuaries. These results have the scope for use by fisheries managers in determining the most suitable mesh size regulations for estuarine gill net fisheries.

May the flow be with you – Modelling Hydroecological Risk
Douglas Green1, Sally Maxwell1, David Deane1
1. Department of Environment, Water and Natural Resources, South Australia

Due to the lack of empirical data, expert derived metrics have been used to inform environmental water requirements for water allocation planning in South Australia. The number of these pass/fail metrics that fail has been used to inform the level of risk to ecological assets. This lack of quantitative relationships prevents explicit demonstration of the reduction in risk by returning water. We sought to use fish and macroinvertebrate monitoring data to construct hydro-ecological models to inform the risk to fish and macroinvertebrate populations. Flow response models were developed for Galaxias chlidus, a known flow responder, by examining data collected across the Eastern and Western Mt. Lofty Ranges. This population data was compared to multiple ecologically relevant flow metrics and models were developed for those that showed a response. Four models were developed, two based on the number of riffle flow days, one on the number of zero flow days and one on the average daily runoff. Macroinvertebrate trait and species data was compared to multiple flow metrics. Species richness was used as a representative of the response observed in the mean daily flow for the antecedent 90 days. All of the models developed showed a positive response to increasing flow and these responses were used develop risk levels for various flow management scenarios. This work represents an important step forward for water allocation planning as they allow for empirical analysis of changes to populations based on different modelled flow scenarios.
Saving native Dwarf Galaxias while controlling invasive Mosquitofish: Taking advantage of local adaptations to variable habitats

Author: R.A. Coleman

Institution:
1. Centre for Aquatic Pollution Identification and Management, Bina21 Institute, Dept of Zoology, University of Melbourne, Victoria
2. Melbourne Water Corporation, Docklands, Victoria

The dwarf galaxias, Galaxiella pusilla, is a small freshwater fish of national conservation significance from south-eastern Australia. Anecdotally it has been suggested by a number of authors that dwarf galaxias are able to survive extended periods of habitat drying (e.g. aestivation, refuge in cray burrows), but it has not been rigorously tested. A series of experiments were conducted to understand the capacity for dwarf galaxias to persist without surface water, including the influence of particular habitat types (sediment only, vegetation, detritus, artificial crayfish burrows) on survival rates, as well as measurements of respiration rates in both water and air. In parallel, we tested the responses of the invasive eastern mosquitofish (Gambusia holbrooki), a major competitor and predator that often threaten dwarf galaxias populations.

Dwarf galaxias survived significantly longer than eastern mosquitofish without surface water, with survival rates strongly influenced by the moisture retention capacity of specific habitats. There were also distinct changes in the physiological response of dwarf galaxias to habitat drying, with transition to a mode of air-breathing clearly evident as water levels receded. On the other hand, eastern mosquitofish appeared to change their breathing rate but not their breathing technique. The enhanced ability of dwarf galaxias to cope with habitat drying was also demonstrated by differences in respiration rates – where oxygen consumption was similar between dwarf galaxias and eastern mosquitofish in water, but significantly lower for eastern mosquitofish in air. This research will help inform dwarf galaxias conservation efforts in regards to the potential risk of local extinction due to extended dry conditions or predicted changes in future climate, and the management of invasive species such as eastern mosquitofish.
Author index

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donaldson, J.A</td>
<td>7,31</td>
</tr>
<tr>
<td>Deshi, A</td>
<td>190</td>
</tr>
<tr>
<td>Doubleday, Z</td>
<td>128</td>
</tr>
<tr>
<td>Douglas, J</td>
<td>117</td>
</tr>
<tr>
<td>Douglas, M</td>
<td></td>
</tr>
<tr>
<td>Dowling, C</td>
<td>73</td>
</tr>
<tr>
<td>Driver, P</td>
<td></td>
</tr>
<tr>
<td>Duguid, A</td>
<td>138,304</td>
</tr>
<tr>
<td>Duncan, P</td>
<td>125</td>
</tr>
<tr>
<td>Dutta, D</td>
<td>87</td>
</tr>
<tr>
<td>Dwyer, R</td>
<td>209</td>
</tr>
<tr>
<td>Eason, H</td>
<td>107</td>
</tr>
<tr>
<td>Ebner, B.C</td>
<td></td>
</tr>
<tr>
<td>Egan, H</td>
<td>173</td>
</tr>
<tr>
<td>Eggin, S.M.</td>
<td>64</td>
</tr>
<tr>
<td>El Sawah, S</td>
<td>187</td>
</tr>
<tr>
<td>Ellis, I</td>
<td>310</td>
</tr>
<tr>
<td>Ellis, M.</td>
<td>165</td>
</tr>
<tr>
<td>Emery, T.J</td>
<td>75,183</td>
</tr>
<tr>
<td>Emery, C</td>
<td>172</td>
</tr>
<tr>
<td>Enskine, P</td>
<td>17,190</td>
</tr>
<tr>
<td>Enskine, W</td>
<td>135</td>
</tr>
<tr>
<td>Espinoza, T</td>
<td>216</td>
</tr>
<tr>
<td>Evans, K</td>
<td>135</td>
</tr>
<tr>
<td>Evans, L</td>
<td>303</td>
</tr>
<tr>
<td>Everett, J.D</td>
<td>55</td>
</tr>
<tr>
<td>Every, S.L</td>
<td>302</td>
</tr>
<tr>
<td>Fairbrother, P.S</td>
<td>158</td>
</tr>
<tr>
<td>Fairweather, P</td>
<td>35</td>
</tr>
<tr>
<td>Farley, J.H</td>
<td>315</td>
</tr>
<tr>
<td>Ferguson, G</td>
<td>128</td>
</tr>
<tr>
<td>Feutry, P</td>
<td>28</td>
</tr>
<tr>
<td>Flaherty, M</td>
<td>174</td>
</tr>
<tr>
<td>Flessa, K.W</td>
<td>193</td>
</tr>
<tr>
<td>Fletcher, A</td>
<td>17,190</td>
</tr>
<tr>
<td>Fletcher, C.S</td>
<td>7</td>
</tr>
<tr>
<td>Fobert, E</td>
<td>51</td>
</tr>
<tr>
<td>Forest, C.A</td>
<td>307</td>
</tr>
<tr>
<td>Fowler, T</td>
<td>22</td>
</tr>
<tr>
<td>Frahn, K.A</td>
<td>12</td>
</tr>
<tr>
<td>Frawley, J</td>
<td>217</td>
</tr>
<tr>
<td>Freeman, R</td>
<td>157</td>
</tr>
<tr>
<td>Frusher, S</td>
<td>77</td>
</tr>
<tr>
<td>Fulford, T</td>
<td>308</td>
</tr>
<tr>
<td>Fulton, C</td>
<td>8,9,31,52,64,306,313</td>
</tr>
<tr>
<td>Fulton, W</td>
<td>157</td>
</tr>
<tr>
<td>Gagliardi, B</td>
<td>166</td>
</tr>
<tr>
<td>Galeotti, D</td>
<td>139</td>
</tr>
<tr>
<td>Gallow, C</td>
<td>32,52</td>
</tr>
<tr>
<td>Garcia, E</td>
<td>83,114,115</td>
</tr>
<tr>
<td>Gardner, C</td>
<td>75,183</td>
</tr>
<tr>
<td>Garland, C</td>
<td>197</td>
</tr>
<tr>
<td>Gawe, B</td>
<td></td>
</tr>
<tr>
<td>Gehrig, S.L</td>
<td>12</td>
</tr>
<tr>
<td>George, A</td>
<td>111,121</td>
</tr>
<tr>
<td>Georges, A</td>
<td>318</td>
</tr>
<tr>
<td>Ghosh, D.L.</td>
<td>55</td>
</tr>
<tr>
<td>Gillanders, B</td>
<td>128</td>
</tr>
<tr>
<td>Gilligan, D</td>
<td>97,98</td>
</tr>
<tr>
<td>Git, K</td>
<td>117</td>
</tr>
<tr>
<td>Gomor, M</td>
<td>1</td>
</tr>
<tr>
<td>Grace, M</td>
<td>47</td>
</tr>
<tr>
<td>Grant, T.R</td>
<td>90</td>
</tr>
<tr>
<td>Gray, C.A.</td>
<td>55</td>
</tr>
<tr>
<td>Gray, C.A.</td>
<td>151</td>
</tr>
<tr>
<td>Green, B.S.</td>
<td>75,183</td>
</tr>
<tr>
<td>Green, D</td>
<td>232,320</td>
</tr>
<tr>
<td>Grewe, P</td>
<td>28</td>
</tr>
<tr>
<td>Gresrson, P</td>
<td>116</td>
</tr>
<tr>
<td>Griffiths, J</td>
<td>68</td>
</tr>
<tr>
<td>Griffiths, S</td>
<td>218</td>
</tr>
<tr>
<td>Grows, I.O</td>
<td>71,194</td>
</tr>
<tr>
<td>Gruber, B</td>
<td>318</td>
</tr>
<tr>
<td>Grubert, M.A</td>
<td>39</td>
</tr>
<tr>
<td>Gwinn, D</td>
<td>152</td>
</tr>
<tr>
<td>Hadwen, W.L.</td>
<td>71</td>
</tr>
<tr>
<td>Haine, B</td>
<td>168</td>
</tr>
<tr>
<td>Hall, A</td>
<td>108</td>
</tr>
<tr>
<td>Hall, N</td>
<td>220</td>
</tr>
<tr>
<td>Hamer, P</td>
<td>22,206</td>
</tr>
<tr>
<td>Hames, F</td>
<td>102</td>
</tr>
<tr>
<td>Hammer, M</td>
<td></td>
</tr>
<tr>
<td>Hamr, P</td>
<td>157</td>
</tr>
<tr>
<td>Hanich, Q</td>
<td>100</td>
</tr>
<tr>
<td>Hardie, S.A</td>
<td>160,111</td>
</tr>
<tr>
<td>Harding, C</td>
<td>18</td>
</tr>
<tr>
<td>Harding, D</td>
<td>209</td>
</tr>
<tr>
<td>Harford, A</td>
<td>111</td>
</tr>
<tr>
<td>Harrison, E</td>
<td>187</td>
</tr>
<tr>
<td>Harry, A</td>
<td>21</td>
</tr>
<tr>
<td>Hart, A</td>
<td>220</td>
</tr>
<tr>
<td>Hart, B</td>
<td>229</td>
</tr>
<tr>
<td>Hartmann, K</td>
<td>75,183</td>
</tr>
<tr>
<td>Hassell, K</td>
<td>94,164,166</td>
</tr>
<tr>
<td>Hatton, S</td>
<td>67,309</td>
</tr>
<tr>
<td>Hay, S</td>
<td>91</td>
</tr>
<tr>
<td>Henderson, R</td>
<td>153</td>
</tr>
<tr>
<td>Herrera, M</td>
<td>59</td>
</tr>
<tr>
<td>Hesp, A</td>
<td>73</td>
</tr>
<tr>
<td>Heupel, M.R</td>
<td>65,82,85,303</td>
</tr>
<tr>
<td>Hill, M</td>
<td>108</td>
</tr>
<tr>
<td>Hipsey, M</td>
<td>231</td>
</tr>
<tr>
<td>Hirst, A</td>
<td>221</td>
</tr>
<tr>
<td>Hitchcock, J.N</td>
<td>71</td>
</tr>
<tr>
<td>Ho, Y</td>
<td>198</td>
</tr>
<tr>
<td>Hobday, A</td>
<td>22, 55</td>
</tr>
<tr>
<td>Hodgens, P</td>
<td>138,304</td>
</tr>
<tr>
<td>Hoffmann, A.A</td>
<td>321</td>
</tr>
<tr>
<td>Hoffmann, A</td>
<td>30</td>
</tr>
<tr>
<td>Hohnberg, D</td>
<td>126,223</td>
</tr>
<tr>
<td>Hooper, G</td>
<td>41</td>
</tr>
<tr>
<td>Hooper, R</td>
<td>232</td>
</tr>
<tr>
<td>Howson, T</td>
<td>69,305</td>
</tr>
<tr>
<td>Humphrey, C</td>
<td>111,121,165</td>
</tr>
<tr>
<td>Humphries, P</td>
<td>126,152</td>
</tr>
<tr>
<td>Hunt, D.E</td>
<td>40</td>
</tr>
<tr>
<td>Hunt, T.L</td>
<td>117</td>
</tr>
<tr>
<td>Huntley, S</td>
<td>310</td>
</tr>
<tr>
<td>Hurst, T</td>
<td>210</td>
</tr>
<tr>
<td>Huveneers, c</td>
<td>35</td>
</tr>
<tr>
<td>Iervasi, D</td>
<td>116</td>
</tr>
<tr>
<td>Ives, M.C</td>
<td>151</td>
</tr>
<tr>
<td>Izro, C</td>
<td>128</td>
</tr>
<tr>
<td>Jackson, G</td>
<td>77,219</td>
</tr>
<tr>
<td>Jackson, S</td>
<td>227</td>
</tr>
<tr>
<td>Jacobs, S.J</td>
<td>168</td>
</tr>
<tr>
<td>Jakeman, T</td>
<td>187</td>
</tr>
<tr>
<td>James, C</td>
<td>36</td>
</tr>
<tr>
<td>Jardine, T</td>
<td>316</td>
</tr>
<tr>
<td>Jarvis, D</td>
<td>157</td>
</tr>
<tr>
<td>Jakaboons, M</td>
<td>139,305</td>
</tr>
<tr>
<td>Jenkins, C</td>
<td>81</td>
</tr>
<tr>
<td>Jenkins, K</td>
<td>91,108</td>
</tr>
<tr>
<td>Jeppe, K</td>
<td>166</td>
</tr>
<tr>
<td>Joannes-Boyard, R</td>
<td>38</td>
</tr>
<tr>
<td>Johnis, C</td>
<td>17</td>
</tr>
<tr>
<td>Johnson, G.J</td>
<td>234</td>
</tr>
<tr>
<td>Johnson, J</td>
<td>21,25</td>
</tr>
<tr>
<td>Jones, A</td>
<td>41</td>
</tr>
<tr>
<td>Jones, I</td>
<td>194</td>
</tr>
<tr>
<td>Kalida, R</td>
<td>37</td>
</tr>
<tr>
<td>Karim, F</td>
<td>87,167</td>
</tr>
<tr>
<td>Kath, J</td>
<td>187</td>
</tr>
<tr>
<td>Kavanagh, M</td>
<td>104</td>
</tr>
<tr>
<td>Kearns, J</td>
<td>129,146</td>
</tr>
<tr>
<td>Keating, J.P</td>
<td>74</td>
</tr>
<tr>
<td>Kefferd, B</td>
<td>142,163</td>
</tr>
<tr>
<td>Keith, P</td>
<td>26</td>
</tr>
<tr>
<td>Keleher, J</td>
<td>34,150</td>
</tr>
<tr>
<td>Kellar, C</td>
<td>89,107,166</td>
</tr>
<tr>
<td>Keller, K</td>
<td>63</td>
</tr>
<tr>
<td>Kelly, T</td>
<td>68</td>
</tr>
<tr>
<td>Kemp, J</td>
<td>145</td>
</tr>
<tr>
<td>Kennard, M</td>
<td>76</td>
</tr>
<tr>
<td>Kerezy, A</td>
<td>6</td>
</tr>
<tr>
<td>Kind, PK</td>
<td>6</td>
</tr>
<tr>
<td>King, A</td>
<td>47,120,152,215</td>
</tr>
<tr>
<td>Kingsford, R</td>
<td>47,91,133,213</td>
</tr>
<tr>
<td>Kirby, D</td>
<td>100,235</td>
</tr>
<tr>
<td>Kitchingman, A</td>
<td>129</td>
</tr>
<tr>
<td>Klamt, M</td>
<td>68</td>
</tr>
<tr>
<td>Kluuzinger, M.W</td>
<td>92</td>
</tr>
<tr>
<td>Knott, N</td>
<td>32, 84</td>
</tr>
<tr>
<td>Kobayashi, T</td>
<td>168</td>
</tr>
<tr>
<td>Kobyashi, T</td>
<td>108</td>
</tr>
<tr>
<td>Koehn, J</td>
<td>47,98,99,126</td>
</tr>
<tr>
<td>Kopf, K</td>
<td>126</td>
</tr>
<tr>
<td>Kopf, R</td>
<td>47</td>
</tr>
<tr>
<td>Koster, W</td>
<td>130</td>
</tr>
<tr>
<td>Kuhnert, PM</td>
<td>315</td>
</tr>
<tr>
<td>Kute, C</td>
<td>188</td>
</tr>
<tr>
<td>Kyne, P</td>
<td>28,181,306</td>
</tr>
<tr>
<td>Lackser, K.L</td>
<td>115</td>
</tr>
<tr>
<td>Lacksen, R.S</td>
<td>114</td>
</tr>
<tr>
<td>Lai, E</td>
<td>220</td>
</tr>
<tr>
<td>Lamache, G</td>
<td>188</td>
</tr>
<tr>
<td>Lampard, B</td>
<td>310</td>
</tr>
<tr>
<td>Lauterschlagler, A.D</td>
<td>69</td>
</tr>
<tr>
<td>Le Brocque, A</td>
<td>187</td>
</tr>
<tr>
<td>Le Feuvre, M.C</td>
<td>161</td>
</tr>
<tr>
<td>Ledee, E.J</td>
<td>65</td>
</tr>
<tr>
<td>Lee, H</td>
<td>234</td>
</tr>
<tr>
<td>Leigh, S.J</td>
<td>127</td>
</tr>
<tr>
<td>Leland, J.C</td>
<td>38</td>
</tr>
<tr>
<td>Lemmon, A.R</td>
<td>27,171</td>
</tr>
<tr>
<td>Lenon, E</td>
<td>108</td>
</tr>
</tbody>
</table>
Author index

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leon, R</td>
<td>75</td>
</tr>
<tr>
<td>Lester, R.E</td>
<td>193</td>
</tr>
<tr>
<td>Liddy, M</td>
<td>185</td>
</tr>
<tr>
<td>Lieszke,</td>
<td>117, 204</td>
</tr>
<tr>
<td>Ligtermot, E</td>
<td>155</td>
</tr>
<tr>
<td>Lim, R</td>
<td>45</td>
</tr>
<tr>
<td>Linke, S</td>
<td>45</td>
</tr>
<tr>
<td>Linklater, D</td>
<td>15</td>
</tr>
<tr>
<td>Lintermans, M</td>
<td>123</td>
</tr>
<tr>
<td>Little, S</td>
<td>223</td>
</tr>
<tr>
<td>Livore, J.P</td>
<td>214</td>
</tr>
<tr>
<td>Lobb, J</td>
<td>168</td>
</tr>
<tr>
<td>Long, S</td>
<td>166</td>
</tr>
<tr>
<td>Lonza, D</td>
<td>95</td>
</tr>
<tr>
<td>Loo, S</td>
<td>3</td>
</tr>
<tr>
<td>Louzaq, M</td>
<td>59</td>
</tr>
<tr>
<td>Lovett, D</td>
<td>184</td>
</tr>
<tr>
<td>Lowry, M</td>
<td>53, 63</td>
</tr>
<tr>
<td>Lui, S</td>
<td>123</td>
</tr>
<tr>
<td>Lund, M</td>
<td>139</td>
</tr>
<tr>
<td>Lyle, J</td>
<td>218, 219</td>
</tr>
<tr>
<td>Lymberry, A</td>
<td>150</td>
</tr>
<tr>
<td>Lynch, K</td>
<td>312</td>
</tr>
<tr>
<td>Lyon, J</td>
<td>177, 249</td>
</tr>
<tr>
<td>Macbeth, M</td>
<td>233</td>
</tr>
<tr>
<td>MacDonald, J</td>
<td>138</td>
</tr>
<tr>
<td>Macfarlane, K.R</td>
<td>160, 311</td>
</tr>
<tr>
<td>Mackenzie, J</td>
<td>36</td>
</tr>
<tr>
<td>Mackintosh, T.J</td>
<td>136</td>
</tr>
<tr>
<td>MacMahan, D</td>
<td>166</td>
</tr>
<tr>
<td>Maher, E</td>
<td>144, 224</td>
</tr>
<tr>
<td>Malcolm, H</td>
<td>32</td>
</tr>
<tr>
<td>Marchant, R</td>
<td>90</td>
</tr>
<tr>
<td>Marshall, J.C</td>
<td>199, 225</td>
</tr>
<tr>
<td>Marshall, S</td>
<td>216</td>
</tr>
<tr>
<td>Martin, K</td>
<td>236</td>
</tr>
<tr>
<td>Marvanek, S</td>
<td>87, 167</td>
</tr>
<tr>
<td>Marzullo, T.A</td>
<td>84</td>
</tr>
</tbody>
</table>

Author index

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmer, C</td>
<td>153</td>
</tr>
<tr>
<td>Park, G</td>
<td>224</td>
</tr>
<tr>
<td>Parrish, C.C</td>
<td>315</td>
</tr>
<tr>
<td>Partrick, M</td>
<td>187</td>
</tr>
<tr>
<td>Paull, M</td>
<td>192</td>
</tr>
<tr>
<td>Payne, N.L</td>
<td>84</td>
</tr>
<tr>
<td>Pearson, R.G</td>
<td>24</td>
</tr>
<tr>
<td>Ped, G</td>
<td>21, 77</td>
</tr>
<tr>
<td>Penny, S</td>
<td>314</td>
</tr>
<tr>
<td>Pepperell, J</td>
<td>46</td>
</tr>
<tr>
<td>Peterson, E</td>
<td>46</td>
</tr>
<tr>
<td>Petty, C</td>
<td>116, 154</td>
</tr>
<tr>
<td>Pettybridge, H</td>
<td>306, 315</td>
</tr>
<tr>
<td>Peto, R</td>
<td>169</td>
</tr>
<tr>
<td>Pettigrove, V</td>
<td></td>
</tr>
<tr>
<td>Pettitt, N</td>
<td>116, 154</td>
</tr>
<tr>
<td>Pillans, R</td>
<td>28, 181, 209</td>
</tr>
<tr>
<td>Pinder, A</td>
<td>88</td>
</tr>
<tr>
<td>Pink, J</td>
<td>8</td>
</tr>
<tr>
<td>Pitman, K</td>
<td>5</td>
</tr>
<tr>
<td>Pettman, K.S</td>
<td>202</td>
</tr>
<tr>
<td>Pittock, J</td>
<td>313</td>
</tr>
<tr>
<td>Pollino, C.A</td>
<td>44, 45, 189, 230</td>
</tr>
<tr>
<td>Pollcock, K</td>
<td>219</td>
</tr>
<tr>
<td>Pournaris, K</td>
<td>202</td>
</tr>
<tr>
<td>Potter, I.C</td>
<td>54</td>
</tr>
<tr>
<td>Powell, S</td>
<td>187</td>
</tr>
<tr>
<td>Price, A</td>
<td>47</td>
</tr>
<tr>
<td>Priddinmore, P</td>
<td>23, 141</td>
</tr>
<tr>
<td>Prosper, K</td>
<td>56</td>
</tr>
<tr>
<td>Pusey, B</td>
<td>24, 83, 152, 154</td>
</tr>
<tr>
<td>Raadik, T.A</td>
<td>158, 321</td>
</tr>
<tr>
<td>Radford, B</td>
<td>52</td>
</tr>
<tr>
<td>Rassin, G</td>
<td>223</td>
</tr>
<tr>
<td>Ralph, T.J</td>
<td>168</td>
</tr>
<tr>
<td>Ramsay, A</td>
<td>34</td>
</tr>
<tr>
<td>Ravinson, N</td>
<td>40</td>
</tr>
<tr>
<td>Rayner, T</td>
<td>213, 316</td>
</tr>
<tr>
<td>Razeng, E</td>
<td>27</td>
</tr>
<tr>
<td>Reardon-Smith, K</td>
<td>297</td>
</tr>
<tr>
<td>Rees, G</td>
<td>110, 169</td>
</tr>
<tr>
<td>Reich, P</td>
<td>16</td>
</tr>
<tr>
<td>Reid, C</td>
<td>212, 317</td>
</tr>
<tr>
<td>Reid, M.A</td>
<td>16</td>
</tr>
<tr>
<td>Reid, M.C</td>
<td>16</td>
</tr>
<tr>
<td>Reinfield, L.V</td>
<td>151</td>
</tr>
<tr>
<td>Richards, S</td>
<td>237</td>
</tr>
<tr>
<td>Rigois, A</td>
<td>231</td>
</tr>
<tr>
<td>Ringwood, G</td>
<td>102</td>
</tr>
<tr>
<td>Rixon, S</td>
<td>212</td>
</tr>
<tr>
<td>Roberts, A</td>
<td>224</td>
</tr>
<tr>
<td>Roberts, D.T</td>
<td>5, 202, 209</td>
</tr>
<tr>
<td>Robins, J</td>
<td>21</td>
</tr>
<tr>
<td>Robinson, W</td>
<td>162, 203</td>
</tr>
<tr>
<td>Robinson, B.J</td>
<td>122, 134, 312</td>
</tr>
<tr>
<td>Roelke, D.L</td>
<td>71</td>
</tr>
<tr>
<td>Rohlf, A</td>
<td>110</td>
</tr>
<tr>
<td>Rose, D</td>
<td>184</td>
</tr>
<tr>
<td>Rose, G</td>
<td>166</td>
</tr>
<tr>
<td>Ross-Maguee, P</td>
<td>109, 302</td>
</tr>
<tr>
<td>Rowland, S.J</td>
<td>67</td>
</tr>
<tr>
<td>Rowling, K</td>
<td>77</td>
</tr>
<tr>
<td>Rummert, J.L</td>
<td>19</td>
</tr>
<tr>
<td>Ryan, K</td>
<td>219, 220</td>
</tr>
<tr>
<td>Ryder, D</td>
<td>93</td>
</tr>
<tr>
<td>Sahlevist, P</td>
<td>218</td>
</tr>
<tr>
<td>Salmans, N</td>
<td>189</td>
</tr>
<tr>
<td>Sangier, A.C</td>
<td>157</td>
</tr>
<tr>
<td>Sarapak, N.J</td>
<td>38</td>
</tr>
<tr>
<td>Sauer, F</td>
<td>142</td>
</tr>
<tr>
<td>Saunders, T</td>
<td>21, 95, 172</td>
</tr>
<tr>
<td>Sawyer, B</td>
<td>21</td>
</tr>
<tr>
<td>Saxton, N</td>
<td>145</td>
</tr>
<tr>
<td>Saynor, M.J</td>
<td>135</td>
</tr>
<tr>
<td>Scanlan, J</td>
<td>230</td>
</tr>
<tr>
<td>Schaffner, J</td>
<td>31</td>
</tr>
<tr>
<td>Schrefers, K</td>
<td>227</td>
</tr>
<tr>
<td>Schmarr, D</td>
<td>138</td>
</tr>
<tr>
<td>Schnierer, S</td>
<td>173</td>
</tr>
<tr>
<td>Schult, J</td>
<td>13</td>
</tr>
<tr>
<td>Setterfield, S.S</td>
<td>227</td>
</tr>
<tr>
<td>Sharp, W</td>
<td>188</td>
</tr>
<tr>
<td>Sheaves, M</td>
<td>77, 207</td>
</tr>
<tr>
<td>Sheldon, F</td>
<td>46, 88</td>
</tr>
<tr>
<td>Shelley J</td>
<td>177</td>
</tr>
<tr>
<td>Sim, L</td>
<td>88</td>
</tr>
<tr>
<td>Simon, A</td>
<td>144</td>
</tr>
<tr>
<td>Simpfendorfer, C.A</td>
<td>50, 63, 82, 85, 303</td>
</tr>
<tr>
<td>Sims, N</td>
<td>42, 47</td>
</tr>
<tr>
<td>Sinclair, R</td>
<td>137</td>
</tr>
<tr>
<td>Sklaratos Simoes, M</td>
<td>95</td>
</tr>
<tr>
<td>Sloan, S</td>
<td>41</td>
</tr>
<tr>
<td>Smallwood, C</td>
<td>220</td>
</tr>
<tr>
<td>Smith, A.E</td>
<td>27</td>
</tr>
<tr>
<td>Smith, D</td>
<td>6</td>
</tr>
<tr>
<td>Smith, J</td>
<td>53</td>
</tr>
<tr>
<td>Smith, K</td>
<td>73</td>
</tr>
<tr>
<td>Smolders, K</td>
<td>145</td>
</tr>
<tr>
<td>Soyanos, K</td>
<td>94</td>
</tr>
<tr>
<td>Spencer, J</td>
<td>108</td>
</tr>
<tr>
<td>St Clar, R</td>
<td>119</td>
</tr>
<tr>
<td>St Jack, J</td>
<td>232</td>
</tr>
<tr>
<td>Starks, D</td>
<td>9, 64</td>
</tr>
<tr>
<td>Steer, M.A</td>
<td>72</td>
</tr>
<tr>
<td>Sternberg, D</td>
<td>60</td>
</tr>
<tr>
<td>Steward, A.L</td>
<td>199</td>
</tr>
<tr>
<td>Stewart, M</td>
<td>145</td>
</tr>
<tr>
<td>Sthoessel, D.J</td>
<td>158</td>
</tr>
<tr>
<td>Stoffels, R</td>
<td>23, 126, 141</td>
</tr>
<tr>
<td>Strachan, S.R</td>
<td>134</td>
</tr>
<tr>
<td>Stratford, D</td>
<td>44</td>
</tr>
<tr>
<td>Stuart, I</td>
<td>98, 99</td>
</tr>
<tr>
<td>Stuart-Smith, J</td>
<td>77</td>
</tr>
<tr>
<td>Suiton, L</td>
<td>178</td>
</tr>
</tbody>
</table>
Author index

<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunnucks, P</td>
<td>27,88,171</td>
</tr>
<tr>
<td>Suthers, I</td>
<td>53,63,213</td>
</tr>
<tr>
<td>Suthers, IM</td>
<td>4,55,84</td>
</tr>
<tr>
<td>Swearer, S</td>
<td>51,161,164,177</td>
</tr>
<tr>
<td>Taillebois, L</td>
<td>26</td>
</tr>
<tr>
<td>Tait, J</td>
<td>143</td>
</tr>
<tr>
<td>Talbot, A</td>
<td>153</td>
</tr>
<tr>
<td>Taylor, J</td>
<td>176</td>
</tr>
<tr>
<td>Taylor, M.D</td>
<td>55,84,151</td>
</tr>
<tr>
<td>Tebbutt, K.E</td>
<td>174</td>
</tr>
<tr>
<td>Theis, J</td>
<td>108</td>
</tr>
<tr>
<td>Thomas, R</td>
<td>108</td>
</tr>
<tr>
<td>Thompson, R</td>
<td>47,68,70,88,136,171</td>
</tr>
<tr>
<td>Thoms, M.C</td>
<td>16</td>
</tr>
<tr>
<td>Thomson, J</td>
<td>126</td>
</tr>
<tr>
<td>Thomson, R.B</td>
<td>59</td>
</tr>
<tr>
<td>Thornburn, D</td>
<td>131</td>
</tr>
<tr>
<td>Thwaites, L</td>
<td>98,99</td>
</tr>
<tr>
<td>Tisdell, J.G</td>
<td>75,183</td>
</tr>
<tr>
<td>Tobin, A</td>
<td>21,50,65</td>
</tr>
<tr>
<td>Todd, C</td>
<td>98,99</td>
</tr>
<tr>
<td>Tonkin, Z</td>
<td>129,146</td>
</tr>
<tr>
<td>Townsend, A</td>
<td>102</td>
</tr>
<tr>
<td>Townsend, S</td>
<td>13,113,138,153,215</td>
</tr>
<tr>
<td>Tracey, S</td>
<td>222</td>
</tr>
<tr>
<td>Travers, M.J</td>
<td>54,172</td>
</tr>
<tr>
<td>Treinne, F</td>
<td>220</td>
</tr>
<tr>
<td>Tschierschke, A</td>
<td>109</td>
</tr>
<tr>
<td>Tuck, G.N</td>
<td>59</td>
</tr>
<tr>
<td>Tulbure, M</td>
<td>118</td>
</tr>
<tr>
<td>Turner, K</td>
<td>135</td>
</tr>
<tr>
<td>Unmack, P</td>
<td>24,25,171,177,318</td>
</tr>
<tr>
<td>Valdez, D</td>
<td>316</td>
</tr>
<tr>
<td>van der Meulen, D.E</td>
<td>151</td>
</tr>
<tr>
<td>Veitch, V</td>
<td>143</td>
</tr>
<tr>
<td>Venables, B</td>
<td>46,218</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author Abstract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunnucks, P</td>
</tr>
<tr>
<td>Suthers, I</td>
</tr>
<tr>
<td>Suthers, IM</td>
</tr>
<tr>
<td>Swearer, S</td>
</tr>
<tr>
<td>Taillebois, L</td>
</tr>
<tr>
<td>Tait, J</td>
</tr>
<tr>
<td>Talbot, A</td>
</tr>
<tr>
<td>Taylor, J</td>
</tr>
<tr>
<td>Taylor, M.D</td>
</tr>
<tr>
<td>Tebbutt, K.E</td>
</tr>
<tr>
<td>Theis, J</td>
</tr>
<tr>
<td>Thomas, R</td>
</tr>
<tr>
<td>Thompson, R</td>
</tr>
<tr>
<td>Thoms, M.C</td>
</tr>
<tr>
<td>Thomson, J</td>
</tr>
<tr>
<td>Thomson, R.B</td>
</tr>
<tr>
<td>Thornburn, D</td>
</tr>
<tr>
<td>Thwaites, L</td>
</tr>
<tr>
<td>Tisdell, J.G</td>
</tr>
<tr>
<td>Tobin, A</td>
</tr>
<tr>
<td>Todd, C</td>
</tr>
<tr>
<td>Tonkin, Z</td>
</tr>
<tr>
<td>Townsend, A</td>
</tr>
<tr>
<td>Townsend, S</td>
</tr>
<tr>
<td>Tracey, S</td>
</tr>
<tr>
<td>Travers, M.J</td>
</tr>
<tr>
<td>Treinne, F</td>
</tr>
<tr>
<td>Tschierschke, A</td>
</tr>
<tr>
<td>Tuck, G.N</td>
</tr>
<tr>
<td>Tulbure, M</td>
</tr>
<tr>
<td>Turner, K</td>
</tr>
<tr>
<td>Unmack, P</td>
</tr>
<tr>
<td>Valdez, D</td>
</tr>
<tr>
<td>van der Meulen, D.E</td>
</tr>
<tr>
<td>Veitch, V</td>
</tr>
<tr>
<td>Venables, B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author Abstract No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versace, V</td>
</tr>
<tr>
<td>Visser, C</td>
</tr>
<tr>
<td>Vivancos, A</td>
</tr>
<tr>
<td>Vivier, L</td>
</tr>
<tr>
<td>Walker, K.F</td>
</tr>
<tr>
<td>Wallace, J</td>
</tr>
<tr>
<td>Walsh, C.T</td>
</tr>
<tr>
<td>Waltham, N</td>
</tr>
<tr>
<td>Wang, Y</td>
</tr>
<tr>
<td>Ward, D</td>
</tr>
<tr>
<td>Ward, P</td>
</tr>
<tr>
<td>Wassens, S</td>
</tr>
<tr>
<td>Warham, N</td>
</tr>
<tr>
<td>Watts, R</td>
</tr>
<tr>
<td>Weatherman, K</td>
</tr>
<tr>
<td>Wegener, J</td>
</tr>
<tr>
<td>Weimerskirk, H</td>
</tr>
<tr>
<td>Welch, D</td>
</tr>
<tr>
<td>Wevill, T</td>
</tr>
<tr>
<td>White, G</td>
</tr>
<tr>
<td>Whiteside, T</td>
</tr>
<tr>
<td>Whitfield, A.K</td>
</tr>
<tr>
<td>Whitmarsh, S</td>
</tr>
<tr>
<td>Whitty, J</td>
</tr>
<tr>
<td>Wickramaratne, C</td>
</tr>
<tr>
<td>Williams, A.J</td>
</tr>
<tr>
<td>Williams, J</td>
</tr>
<tr>
<td>Williams, S</td>
</tr>
<tr>
<td>Wilson, J</td>
</tr>
<tr>
<td>Wilson, P.J</td>
</tr>
<tr>
<td>Wise, B</td>
</tr>
<tr>
<td>Wong, B.B</td>
</tr>
<tr>
<td>Wood, J</td>
</tr>
<tr>
<td>Wood, R.J</td>
</tr>
<tr>
<td>Woodward, G</td>
</tr>
<tr>
<td>Xuereb, S</td>
</tr>
<tr>
<td>Ye, Q</td>
</tr>
<tr>
<td>Yen, J</td>
</tr>
<tr>
<td>Yeoh, D.E</td>
</tr>
<tr>
<td>Yick, J</td>
</tr>
<tr>
<td>Young, J.W</td>
</tr>
<tr>
<td>Zampatti, B</td>
</tr>
</tbody>
</table>

NATA Accredited Environmental Testing Laboratory (accreditation no. 10603)

Laboratory Services include:
Analysis of natural waters, sediment, soil and biota from aquatic environments to ANZECC guidelines

Water including saline – nutrients, chlorophyll, organic carbon, ultra-trace heavy metals, trace elements, major ions, suspended solids, turbidity and more.

Sediment and soil - nutrients, chlorophyll, organic carbon, trace elements, heavy metals, lead isotope ratios, particle size distribution, elutriation, pore water, sediment traps.

Biota – plant nutrients, ions, trace elements, heavy metals, sorting and identification of invasive species.

Aquatic Fieldwork Services include:
The monitoring of marine environments, estuaries, rivers, lakes and wetlands

- Water column sampling and profiling
- Dredge plume and outfall monitoring
- Commercial diving (AS2815.1, AS2815.2)
- Sediment sampling
- Contaminant bio-monitoring
- Benthic health monitoring of seagrasses
- Bio-available trace metal monitoring
- Benthic sampling & invertebrate surveys
- Vegetation mapping
- Underwater video surveys
- Field Equipment hire and calibration

Contact MAFRL: Tel: (08) 9360 6907
MAFRL Manager - Krzysztof Wienczczog
Email: k.wienczczog@murdoch.edu.au
Lab Manager – Jamie Woodward
Email: j.woodward@murdoch.edu.au
Web: www.mafrl.murdoch.edu.au